
Enterprise JavaBeans 3.0

Claude Duvallet

University of Le Havre
Faculty of Sciences and Technology

25 rue Philippe Lebon - BP 540
76058 LE HAVRE CEDEX, FRANCE
Claude.Duvallet@gmail.com

http://litis.univ-lehavre.fr/∼duvallet/index-en.php

Claude Duvallet — 1/113 Enterprise JavaBeans

Who am I?
University of Le Havre

My Laboratory

Who am I?
Wǒ tiaò Duvallet Claude, Wǒ shì fǎ guó rén

Associate Professor in computer science since September 2003.
PhD obtained in October 2001 at Le Havre University, France

Where do I come from? Le Havre University (France)
dà xué lè ā fuó ěr.
My topics of interest:

Teachings: Programming (Java, C/C++), Operating Systems
(Linux, Unix), Distributed System (CORBA, RMI, RPC, EJB,
LDAP), Network Protocols and Architectures, Network and
System Administration.
Research: Real-Time Databases, Multimedia Systems, Quality of
Service Management, Distributed Systems, etc.

Current PhD supervising: Nizar Idoudi, Emna Bouazizi and
Bechir Alaya.
My homepage in English:
http://litis.univ-lehavre.fr/~duvallet/index-en.php

Claude Duvallet — 2/113 Enterprise JavaBeans

http://litis.univ-lehavre.fr/~duvallet/index-en.php

Who am I?
University of Le Havre

My Laboratory

Location of Le Havre in France
Location of the University in Le Havre
Presentation of the University

Le Havre in France

Claude Duvallet — 3/113 Enterprise JavaBeans

Who am I?
University of Le Havre

My Laboratory

Location of Le Havre in France
Location of the University in Le Havre
Presentation of the University

University of Le Havre

Claude Duvallet — 4/113 Enterprise JavaBeans

Who am I?
University of Le Havre

My Laboratory

Location of Le Havre in France
Location of the University in Le Havre
Presentation of the University

Presentation of the University of Le Havre
University of Le Havre is a small
university: 7000 students.
Four topics of studies:

Sciences, Technologies,
Health.
Law, Economics, Management.
Letter Language.
Social and Human Sciences.

3 Faculties and 2 Institutes:
Faculty of Sciences and
Technologies.
Faculty of International Affairs.
Faculty of Letters and
Humanities.
Institute of Technology.
Institute of Logistic.

Claude Duvallet — 5/113 Enterprise JavaBeans

Who am I?
University of Le Havre

My Laboratory

Computer Science,
Information Processing, and

Systems Laboratory

Claude Duvallet — 6/113 Enterprise JavaBeans

Enterprise JavaBeans 3.0

Claude Duvallet — 7/113 Enterprise JavaBeans

Part I: Introduction to the
Enterprise JavaBeans

Claude Duvallet — 8/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Introduction to the Enterprise JavaBeans

4 Architecture of an information system

5 J2EE architecture

6 The Enterprise JavaBeans

7 EJB: some distributed objects

Claude Duvallet — 9/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Architecture of an information system

To take into account:

access to the data,

treatment of the data,

presentation of data,

network connectivity,

transaction design,

application security.

Claude Duvallet — 10/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Architecture in layer (1/3)

It allows to master the design of an information system, as well as
its evolution by dividing the roles in the forms of software layers.
A classical architecture is a 3 layers architecture:

the presentation layer,
the business layer,
the data layer.

The presentation layer:
it contains components which realize the computer human
interface of the application and manage the interactions with the
user.
it can be developed with Motif, MFC or JFC (swing), or yet a Java
applet, an ActiveX or a dynamic or static HTML page.

Claude Duvallet — 11/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Architecture in layer (2/3)

The business layer:
It contains components which realize the management of
business rules.
Example: for a bank applications, the components may be object
that models account, contract,... The object are written in C, C++,
Java...

The data layer:
It is used by the business layer to store the states of the objects in
a persistence support (relational or object database...).
The data layer may change or evolve independently from the other
layers.

Claude Duvallet — 12/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Architecture in layer (3/3)

The main objective of the layers separation:
to insure the Independence of the business logic from the
problems of visualization an storage.

⇒ A more modular application, better structured and easier to
maintains.

We can envisage intermediate layers between the precedent
layers:

an applicative layer applicative between the presentation and
business layers (controllers...),
a layer of technical services between the business and data layers.

Claude Duvallet — 13/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Architecture client/server (1/2)

The physical separation of the layers is an other problems.

In a two layers architecture, two layers are grouped and so
separated from the third one.

Particularly, it is the case in the client/server applications where
the treatment and the display are done on the client computer
whereas the data are stored on a server. They are called "heavy
clients" with a high cost to deploy it.

An other method consist on grouping together the business logic
and the storage of the data on the server.

Claude Duvallet — 14/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Architecture client/server (2/2)

Level 1 Level 2

Sending

result

Sending

request

Server

Requests,

HTTP,

Files,

SQL

Client

Claude Duvallet — 15/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

The 3-layers architecture (1/3)

The 3 layers may be completely physically separated:
It is possible to decompose all these layer in sub-layers located on
different computer or hosts.
So, we talk about n level architecture.

It is the case of the WEB application:
the presentation layer is constituted of JSP pages and servlets,
the business layer is implemented thanks to some beans or object
hosted by an application server,
an the data layer consist on one or many database.

Interest of the 3 levels architecture:
better support the increases of load,
the share of the connection to the resources,
easy to deploy, security.

Claude Duvallet — 16/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

The 3-layers architecture (2/3)

Sending

results

Sending

requests
SQL

Requests

Databases
Server

Application
Server

Requests,

HTTP,

Files,

SQL

Client

Level 1 Level 2

Level 3

Claude Duvallet — 17/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

The 3-layers architecture (3/3)

The server becomes the hearth of the system.

All the logic of the application is implemented in some
components hosted by this server called application server.

It provides to them a runtime environment but also a set of
services.

The business logic may be provided by many applications server
that communicated together. The business objects are
distributed.

For example, in an e-commerce application, the computation
needed to make accounting treatment may be supported by
components located on a first server whereas the components
which manage the stocks are located on an other server.

Claude Duvallet — 18/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Middlewares

The distributed objects need a technical framework in order to
allow the communication between these objects.

This framework must provide to the objects an access at many
services like naming service, transaction management,
persistence management, security management...

In transparent way for the developer that is to say without he
needs to implement the mechanism to insure these services.

⇒ This kind of framework is called Middleware.
Other services are needed:

optimization of the access to the resources (pool of
connections...),
mechanism to activate/passivate the objects,
mechanism to distribute the load and to manage fault tolerance.

Claude Duvallet — 19/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Architecture in layers
Architecture client/server
3-layers architecture
Middleware

Applications servers

Unfortunately, they were not interoperable because of the lack of
standard specifying the Middleware to use, the provided services,
the interfaces to access to them...

The J2EE architecture is a standard proposed by Sun for the
JAVA applications servers.

At the center of this architecture, we find a standardized
Middleware, based on RMI/IIOP, and business objects which are
distributed Java object called EJB (Enterprise JavaBeans).

An application server is a complet environment, which contains
the EJB container and the Web server.

To insure the portability, Sun a specified a set of compatibility
which consist nearly 6000 tests that the server must satisfy to
have the SUN certification.

Claude Duvallet — 20/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

J2EE technologies
The EJB container

J2EE architecture

The EJB technology is included in a more large platform called
J2EE.

This platform consist on an architecture for the development, the
deployment and the execution of the distributed application.

These applications require some technical services like
transactions management, security management, the access by
the client, the database access.

The J2EE platform provides all theses technical services.

The developer could focus on the business logic instead of to
disperse on many technical problems.

Claude Duvallet — 21/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

J2EE technologies
The EJB container

J2EE technologies (1/3)

The included technologies in J2EE, provided thanks to some API,
allow:

The communication between distributed objects with RMI
(Remote Method Invocation) and RMI/IIOP protocol.

The creation of transactional distributed objects with some EJB
(Enterprise JavaBeans).

The research and the getting back, in a server, of the reference
names on distant objects with JNDI (Java Naming and Directory
Interface)

The access to the databases with JDBC (Java DataBase
Connectivity)

The transactions management with JTA (Java Transaction API)
and JTS (Java Transaction Service).

Claude Duvallet — 22/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

J2EE technologies
The EJB container

J2EE technologies (2/3)

They also allow:

The asynchronous communication by some messages between
the distributed objects with JMS (Java Message Service).

The realization of WEB graphical interfaces with the JSP pages
(JavaServer Pages) and the servlets.

The integration of CORBA objects thanks to JavaIDL.

The electronic mails sending thanks to JavaMail.

The integration of existing systems thanks to the connectors.

The descriptions of behavior of the Java components in XML.

Claude Duvallet — 23/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

J2EE technologies
The EJB container

J2EE technologies (3/3)

The business logic is implemented in the EJB which are
transactional components on side of the server and accessible at
distance by the clients.

The EJB are executed in J2EE servers that works as
intermediates servers in a client/servers systems.
Two kinds of connectors are used: the Web container and the
EJB container.

The Web container is an execution environment for the JSP pages
and the servlets which are a gateway between the user interface
and the EJB implementing the business logic.
The EJB container is an execution environment for the EJB. The
EJB container hosts the business component and provides them
some services.

Claude Duvallet — 24/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

J2EE technologies
The EJB container

The EJB container

From the server side, the access to the different resources is
complex.
With the EJB, most of the tasks are done by declaration, avoiding
to write specific code to manage the transactions or the
persistence.
It allows to focus on the development of the component by
delegating to the EJB container the implementation of the
technical services and the providing of these services during the
execution.
At each component is associated a deployment descriptor, to
specify, for example, that a bean is persistent, secured and
accessible by many client in the same time.
The server is in charge of the treatment of this descriptor and
insure the execution of theses services.

Claude Duvallet — 25/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

J2EE technologies
The EJB container

Main functionality of an EJB container (1/2)
The main functionality provided by an EJB container are:

The connectivity between the clients and the EJB:
the container manages the communications between the client
and the EJB.
after the deployment of an EJB in an applications server, the client
may invoke the methods as it were located in the same virtual
machine.
the communications are insured by the Middleware in a
transparent manner.

The management of the persistence:
the persistent components may choose to delegate the
persistence to the container.

The management of the transactions:
the persistent components may choose to delegate the
management of their transactions to the container, which
implements the transactional mechanisms needed for the
realization of the transactional logic describe by the beans.

Claude Duvallet — 26/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

J2EE technologies
The EJB container

Main functionality of an EJB container (2/2)

The management of the security:
security policy declared but not implemented by the developer,
security management base on the security API of Java,
methods links to the security implemented by the container,
utilization of the security attribute define in the deployment
descriptor of the bean used during the phase of deployment.

The concurrency management:
The components are invoked by only one client by many clients
simultaneously.

The management of the life cycle of the components:
creation and destruction of the instances of the components.

The management of a pool of connections:
connection to a database = costly in terms of resources,
number of connections are limited by the number licenses,
solution: the container manage a pool of connections.

Claude Duvallet — 27/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Enterprise JavaBeans (1/3)

The development of software has seen appear in the 90’s years
the notion of component as some pieces of standard code,
reusable and which encapsulate the business logic.

The EJB components are designed to encapsulate the business
logic and avoid the the developer to be worried about all is around
the system: transaction, security, concurrency, communication,
persistence, errors managements...

An EJB component consist on a collection of JAVA class and a
XML file, merged into an unique entity.

The container take into charge all concerning the systems. This
separation of the tasks is the fundamental concept of this
technology.

Claude Duvallet — 28/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Enterprise JavaBeans (2/3)

An EJB component is designed as a reusable set of business
logic and works with all kinds of clients: servlets, JSP, Java/RMI
applications,...

The specification Enterprise JavaBeans 1.1 define 2 types of
beans: Entity Bean and Session Bean.
La specification Enterprise JavaBeans 2.0 introduce a third bean:
the Message Driven Bean. So it exists three types of beans:

the Session Beans,
the Entity Beans,
the Message Driven Beans.

Claude Duvallet — 29/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Enterprise JavaBeans (3/3)

Enterprise JavaBeans
|

| | |

SESSION ENTITY MESSAGE
| |

---------- -------
| | | |

with without CMP BMP
state state

Claude Duvallet — 30/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Session Beans (1/2)

A Session Bean represents a process. It is an extension of the
client process into the J2EE application server.

We distinguish 2 types of Session Beans: the Session Beans
without a state (stateless session) and the Session Beans with a
state (statefull session).

A Session Bean have only one client at one given moment.

For a Session Bean without a state, many clients may be
associated at the same bean successively.

For a Session Bean with a state, it is the same client that’s
making all the invocations.

A Session Bean without a state represents a functional treatment,
like the calculation of a route between two points of the demand
of a transfer between two bank accounts.

Claude Duvallet — 31/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Session Beans (2/2)

A Session Bean with state have a conversational state, that is to
say a state resulting from the interaction with the client.
Example of a Session Bean with state:

a basket on a site of electronic commerce which have two
attributes: one for the name of the customer and one for the
articles selected by this customer.
This bean may have a method lit addArticle() that the
customer/client may invoke to add a new article in the basket.

The state represented by a Session Bean is private and
conversational. The bean is accessible by only one unique client.

Claude Duvallet — 32/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Entity Beans (1/2)

An Entity Bean represents a persistent business object.

For example, an Entity Bean represents a command, an article, a
bank account.

The attributes of an Entity Bean can be stored in a database or
any other means of persistence. An Entity Bean can be used by
several clients simultaneously.
The persistence of an Entity Bean may be managed by the bean
itself or by the container.

In the first case, the operations of reading and writing on the
support of persistence must be encoded in the bean (for example,
SQL code for a relational database).

⇒ we are talking about Bean BMP (Bean Managed Persistence).

Claude Duvallet — 33/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Entity Beans (2/2)

In the second case, persistence is managed by the container and
only the functionality of advanced research must be encoded in
the bean, other operations of reading and writing on the support of
persistence are carried out automatically by the container.

⇒ we are talking about Bean CMP (Container Managed
Persistence).

The state represented by an Entity Bean is shared and
transactional. The bean is the single point of access to such data
by different clients.

Claude Duvallet — 34/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

The Message Driven Beans

The Session Beans and Entity Beans are components distributed
invoked by clients synchronously, that is to say by invocation of
methods,

The Message Driven Beans are beans which consume messages
asynchronously, through the Java Message Service (JMS).

Claude Duvallet — 35/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Session Beans
The Entity Beans
The Message Driven Beans
EJB Interface

EJB Interface

EJB components have EJB interfaces exposing their services
available to customers.

Customers use these interfaces to execute the logic
encapsulated in the bean.

There are 2 kinds of interfaces: the Home interface and the
business interface.

The Home interface is used to create, delete instances of the
bean.

The business interface is used to execute the business methods
included into the bean.

Claude Duvallet — 36/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Example of J2EE application

EJB: some distributed objects (1/3)

distributed objects are useful because they allow strengths to
distribute an application on a network.

However, requirements such as transactions and security are
becoming indispensable in business applications.
A distributed object is an object that can be called from a remote
system, including:

from a customer as part of the process containing the object
(in-process),
from a customer outside this process (out-of-process),
or from a client located anywhere on the network.

Claude Duvallet — 37/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Example of J2EE application

EJB: some distributed objects (2/3)

The means of call for a distributed object are:
1 The client call a stub, which is a client-side proxy object.

The stub mask the client communication network.
The stub sends calls over the network through sockets, by
manipulating the parameters as appropriate in their network
representation.

2 The stub called a skeleton on the network, which is an object
proxy server side.

The skeleton mask made communication network level to be
distributed.
The skeleton is able to receive calls over a socket and manipulate
the settings in their representation network.
The skeleton delegates the call to the object distributed.

3 The distributed object does its task and returns control to the
skeleton, which sends it to the stub for what the latter returns to
the customer.

Claude Duvallet — 38/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Example of J2EE application

EJB: some distributed objects (3/3)

The stub and distributed object implement the same interface,
called remote interface.

A customer who calls a method of distributed object calls in fact a
method stub.
We talk about transparency local/remote.

Different technologies can use objects such as distributed by
OMG CORBA, DCOM Microsoft and Java RMI-IIOP Sun.

Claude Duvallet — 39/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Example of J2EE application

Example of J2EE application

A typical example of application based on J2EE architecture is that an
application of e-commerce:

The client connects to the Web site of a store, consult a
catalogue of items available, it chooses some places in a
shopping cart and adjusts its purchases.
On the side of the Web server, JSP pages and servlets use:

some Entity Beans that reflect the business objects such as
articles, customers, orders, invoices and Session Beans with state
representative baskets customers.
some Session Beans without state which can implement
treatments such as web browsing in a catalogue or request a
quote for the contents of a basket.

Claude Duvallet — 40/113 Enterprise JavaBeans

Architecture of an information system
J2EE architecture

The Enterprise JavaBeans
EJB: some distributed objects

Example of J2EE application

Part II: Session Beans

Claude Duvallet — 41/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Sessions Beans

8 Two kinds of sessions beans

9 Implementation class of a Session Bean

10 Lifecycle of a bean

11 Collaboration between beans

Claude Duvallet — 42/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Introduction

A Session Bean is a component providing a business process.

It implements the business logic, business rules, such as
processing an order, the application processing of bank,...

This is the extension of the client process in a J2EE application
server.

The client can be a Java application independently, an applet, a
servlet or another Session Bean or entity. It seeks the services of
the bean through its business interface.

Two types of Session Beans: with or without state.

Claude Duvallet — 43/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Session Bean without state

A stateless Session Bean is a collection of services, each
represented by a method.

The bean does not preserve a state of a call to another.

When one invokes a method on a bean without state, it executes
the method and returns the result; he was not concerned about
what method was used to be invoked before or after.

The client keeps a reference on the subject EJB but the bean is
free to serve invocations of methods from other objects EJB.

The customer sees the bean through the EJB object which has a
lifespan related to the user session: the instance of the class
implementation can exist before and after the creation of the EJB
object.

Examples of conventional Session Beans without state services
calculations, information retrieval in a comic ...

Claude Duvallet — 44/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Session Bean with a state

A stateful Session Bean is an extension of client server
application.

It conducts operations on behalf of a client and maintains a clean
complementary to the client.

This state is shown by many instances variables of the bean and
is kept between the various calls made by the customer during its
conversation with the bean.

It’s called a conversational state.

It can be read or altered by the methods of the bean.

The classic example is the eCart (electronic basket).

Claude Duvallet — 45/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Implementation class of a Session Bean (1/2)

The class implementation of a Session Bean implements the
SessionBean interface. This interface inherits the interface
EnterpriseBean.

A Session Bean can support one or both business interfaces and
one or both interfaces Home as the bean will be accessible at a
distance and/or locally.

The class implementation does not declare that it implements
these interfaces, but must have methods that correspond to the
methods of business and Home interfaces!

This class must be public, not abstract and not final.

It must have a public constructor without argument and should
not redefine the method finalize ().

Claude Duvallet — 46/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Implementation class of a Session Bean (2/2)

A Session Bean without a state must implement the creating
method ejbCreate () without any argument whereas a stateful
Session Bean must implement a creating method
ejbCreateXxxx ().

The methods of creation must be public, not static, not final.

A creating method throw the exception CreateException if one
of the inputs is not valid.

In the case of a remote interface, the arguments and return value
must be compatible with RMI.

The methods of the interface SessionBean defined by the class
implementation will be invoked by the container to inform the
bean of its course in its life cycle.

Claude Duvallet — 47/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a bean

An application server is likely to mount a charge, that is to say to
serve a large number of clients with limited resources.

It will load into memory a limited number of beans.

Some will be disabled (passivation) and swapped and vice versa
(activation).

The server informs the bean if it should turn it off so that it frees
resources acquired before moving to the passive state.

Same thing for the reactivation to restore resources. It is the role
of the methods ejbActivate () and ejbPassivate () which
are invoked by the container.

The Session Beans have a different life cycle as the case (without
state and with state).

Claude Duvallet — 48/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a Session Bean without state (1/2)

A single bean can be used by the container to serve requests
from different customers, a query at a time, the beans are not
multithreaded.

The container creates a number of beans he puts in a pool and
they are distributed on the various motions.

It may possibly create new instances if the load increases. Or
remove for the opposite reasons.

There was no concept of activation or passivation: methods
ejbPassivate () and ejbActivate () must be empty.

A stateless Session Bean is never passivated, its lifetime is
reduced to two states: non-existent and ready to receive
invocations.

Claude Duvallet — 49/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a Session Bean without state (2/2)

Non−

existent

Ready

ejbRemove()

new ()
setSessionContext()

ejbCreate()

Bussiness methods

The call to the create() method
provides a reference on an object
EJB.

On appeal to a business method,
an instance is selected to serve
the request.

Claude Duvallet — 50/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a Session Bean without state (2/2)

Non−

existent

Ready

ejbRemove()

new ()
setSessionContext()

ejbCreate()

Bussiness methods

The call to the create() method
provides a reference on an object
EJB.

On appeal to a business method,
an instance is selected to serve
the request.

Claude Duvallet — 50/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a Session Bean with state (1/4)

A stateful Session Bean is associated with one customer. It is
activated or passivated by the container.
At a passivation, the container serialize the bean to be saved.

In fact, only serializable variables of instances and the references
of objects in the container (SessionContext) are stored.
Other variables of instances are loaded to the program (closing a
connection and then restored when the activation).

ejbActivate() is almost identical to ejbCreate():
connections to the acquisition of necessary resources.

ejbPassivate() is almost identical to ejbRemove(): liberation
of the connections to resources.

Claude Duvallet — 51/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a Session Bean with state (2/4)

Non−

existent

Ready

Passivated

ejbRemove()

new ()
setSessionContext()

ejbCreate()

Bussiness methods

ejbctivate()
ejbPassivate()

Lifecycle initialization:
The client initiates the life cycle by
invoking create().
The container creates an instance
of the bean and invokes methods
setSessionContext() and
ejbCreate().
Then the bean is ready to receive
calls of business methods of the
client.

Claude Duvallet — 52/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a Session Bean with state (3/4)

Non−

existent

Ready

Passivated

ejbRemove()

new ()
setSessionContext()

ejbCreate()

Bussiness methods

ejbctivate()
ejbPassivate()

Deactivate the bean:
When the bean is in the ready
state, the container can disable or
passivate the bean by deleting it
from memory to a secondary
memory (for example, the bean the
least used).
The container invokes ejbPassivate
() just before passivate the bean.
If the client invokes a method of
bean processing in the state, the
container activates the recharging
in the method then invokes
ejbActivate ().

Claude Duvallet — 53/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Lifecycle of a Session Bean without state
Lifecycle of a Session Bean with state

Lifecycle of a Session Bean with state (4/4)

Non−

existent

Ready

Passivated

ejbRemove()

new ()
setSessionContext()

ejbCreate()

Bussiness methods

ejbctivate()
ejbPassivate()

Ends of the lifecycle:
when the client invokes remove
().
The container invokes then
ejbRemove () and dereference
the bean that can be deleted by the
garbage collector.

Control of the life cycle:
The developer does not control the
life cycle on methods
createXxxx(), remove() and the
business methods.
All other methods are invoked by
the container.

Claude Duvallet — 54/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Collaboration between beans

An application based on EJB involves a number of beans that will
work together.

Each bean has a well-defined, but it may request services from
other beans.

The following example illustrates how such a simple collaboration.

It is a combination of service for Web client.

Whenever the customer provides a value, it is added to the
current content of an accumulator dedicated to the customer.

This accumulator will in turn use the services of a bean Calc to
make the bill.

Claude Duvallet — 55/113 Enterprise JavaBeans

Two kinds of sessions beans
Implementation class of a Session Bean

Lifecycle of a bean
Collaboration between beans

Part III: Entity Bean

Claude Duvallet — 56/113 Enterprise JavaBeans

Introduction
Persistence of Entity Bean

Introduction (1/3)

An Entity Bean can implement objects or components modeling a
reality business with data and not just services.

For example, accounts or orders are business objects.
These objects have an existence independent of processes that
use them: the account continues to exist between two banking.
The Entity Bean is a complete implementation of the concept: the
bean that models account will have as many instances as the
bank accounts.
Each instances contains data associated with the account with its
own identity. At a given moment, all the instances are not in
memory.
The container instantiates a timely bean recovering the data
stored in a database.

Claude Duvallet — 57/113 Enterprise JavaBeans

Introduction
Persistence of Entity Bean

Introduction (2/3)

When there is an update, the container has the responsibility to
save the data in the database.

In case of simultaneous access to the same bean, the container
manages the competition for access directly at the Entity Bean.

Any use of the business object, as the account will be through the
bean.

The server provides the same guarantees in respect of
transactions, security, ...

Like centralized databases have made it possible to reuse data
across multiple applications, beans allow reuse of data and logic
associated among several applications.

Claude Duvallet — 58/113 Enterprise JavaBeans

Introduction
Persistence of Entity Bean

Introduction (3/3)

Moreover, the appearance and spread of standardized EJB mask
the heterogeneity of different databases or sub-systems.

The EJB is a structural element in the development of
applications.
A J2EE application implements the separation of layers:

display level (standalone application, servlets, JSP),
application level (the calling program and stateful Session Bean),
business level (Entity Beans or Sessions Beans without state).

Claude Duvallet — 59/113 Enterprise JavaBeans

Introduction
Persistence of Entity Bean

Mapping between bean and database
Types of Entity Beans

Mapping between bean and database

Mapping between a bean and a database consist on knowing
how attributes of the bean will be recorded in the database.

At the simplest, the attributes of a bean correspond to the
attributes of a tuple in a table.

Claude Duvallet — 60/113 Enterprise JavaBeans

Introduction
Persistence of Entity Bean

Mapping between bean and database
Types of Entity Beans

Types of Entity Beans

The persistence of data is managed in 2 ways.

Synchronizing with the support (the base) can be managed by
the container (Container Managed Persistence: CMP) or by the
bean (Bean Managed Persistence: BMP).

In the first case, it can declare the characteristics of access to the
base to be borne by the container.

In the second case, it will encode the different treatment needed
to communicate with the support of persistence directly into the
bean (JDBC).

Synchronizing with the support (research, update) is done at the
container to the mapping in a transparent manner.

The user of bean do not know if it works CMP or BMP.
Nevertheless from the development point of view, the choice is
important.

Claude Duvallet — 61/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

Part IV: Messages Driven
Bean

Claude Duvallet — 62/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

What is it a message driven bean?

They were introduced in the specification EJB 2.0 to take into
account the processing of asynchronous messages.

They enable applications to treat J2EE (mainly) messages Java
Message Service (JMS), and also other types of messages, while
behaving as an earpiece (listener) JMS message it treats
asynchronously.

The Message Driven Bean implements the
javax.jms.MessageListener interface that allows it to respond to
messages received via the JMS method onMessage().

Claude Duvallet — 63/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

Some similarities with the stateless Session Beans

They keep no state, no data of a specific client.

All instances of Message Driven Beans are equivalent.

The EJB container can send messages to any of them, and these
messages can be processed through competition and a pool of
instances managed by the container.

A Message Driven Bean can send messages to many clients.

Claude Duvallet — 64/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

Characteristics of the Message Driven Beans

They run at the receipt of a message from a client.

They have a life rather short.

They are invoked asynchronously.

They are not directly shared data in a database, but can access
and modify them.

They are without state.

They can not be carried out in an existing transaction (EJB
specification 2.0), but can create a new transaction in the method
onMessage (), during which several operations can be carried
out.

Claude Duvallet — 65/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

Some differences with the Session Beans without state

The client does not use interface to access the Message Driven
Bean.

The client consists on a single bean (class).

The use of Message Driven Beans is preferred to the use of
Session Beans without state when messages must be received
asynchronously so as not to saturate resources on the server
side.

Claude Duvallet — 66/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

API JMS (Java Message Service) - Generality (1/2)

JMS API is not exactly an API but a specification for the Sun
management messages of the J2EE platform.

It is composed mainly of interfaces that simplify the work of
developer for sending or receiving messages.
Four actors are involved in the use of JMS in a system:

The message itself, which is transmitted between 2 applications.
The applications that provide and receive the message, for
example, a customer outside the application server and EJB
application or J2EE.
The applications must be written in Java.

Claude Duvallet — 67/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

API JMS (Java Message Service) - Generality (2/2)

A JMS provider that provides administration tools for the
messages and who is found responsible for the messages that
are sent to the issue.
The objects which are administered resources to be found in the
application server or a directory of JNDI provider. There are 2
kinds of objects:

the ConnectionFactory which are "factories connection" used to
connect to the provider,
and "Destination" who are either "Queue" is "Topic".

Claude Duvallet — 68/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

API JMS (Java Message Service) - Two modes of connection

The mode Point to Point in which it was only one recipient for
each message .

The message is sent to a queue (tail) and is removed from the
JMS provider as soon as it was "consumed" (or has expired).
The producer and consumer of the message need not be
connected at the same time.

The mode Publication/Subscription (Publish/Subscribe) is
similar to how a news server.

A message was posted on a "Topic" and the consumers of this
message must register the Topics of interest to them.
The message is deleted from the provider when it was read and
paid by all subscribers Topic. It may therefore have multiple
recipients.

Claude Duvallet — 69/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

API JMS (Java Message Service) - Two modes of consumption

Two consumption of messages from a Queue or a Topic can be
received in 2 ways:

Synchronously, the application is blocked when calling the method
receive (). An overloaded version of this method can make the
hand after the expiry of a timeout.
Asynchronously, the application is informed of the arrival of a
message via a MessageListener. This thread is launching a
listener which attends messages and executes a method at their
arrivals.

Claude Duvallet — 70/113 Enterprise JavaBeans

Introduction
Presentation of the Message Driven Beans

API JMS (Java Message Service)

The norm 3.0

Claude Duvallet — 71/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Part III: The norm 3.0

17 Objectives of the norm 3.0

18 Session Beans

19 Message Driven Beans

20 Entity Beans

Claude Duvallet — 72/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Introduction

The standard EJB 3.0 is an important development in the field of
EJB.

It is an important part of the standard Java 2 EE 5.

A new management model data persistence inspired Hibernate
Jboss.
A simplification very important developments.

Using annotations introduced in version 5.0 of Java.
Adoption of POJO programming model.
Removing deployment descriptors.
Removing of business interfaces and interfaces Home.

The standard EJB 3.0 also incorporates an Aspect Oriented
Programming (AOP) by introducing the concept of interceptor
(Interceptor).

Claude Duvallet — 73/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Objectives of the norm 3.0

Simplification of the definition of interfaces, eliminating a number
of pre-requisites in the standard 2.1 (no legacy of super classes
or interfaces).

Simplifying the creation of Bean.

Simplification of APIs for access to the environment of the Bean:
defining a simple injection dependent.

Introduction annotations in Java instead of the deployment
descriptor.

Simplification on the persistence object facilitated by the use of
object / relational mapping based on the direct use of Java
classes and non-persistent components.

Claude Duvallet — 74/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

The annotations

The annotations metadata allowing some tools to generate
additional constructions in the compilation or execution.

They simplify writing programs.

They can happen deployment descriptor. Nevertheless, it is
always possible to use it.

It can specify interfaces local or remote, with only Bean keywords
"@Remote" and "@Local."

It can define a session Bean with or without state with only the
keywords "@Statefull" or "@Stateless."

Claude Duvallet — 75/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Hello World with the EJB 3.0 (1/4)

Definition of the interface Hello:
Now, this interface is the only one to define.
Interface extremely simple: no need to have to any inheritance.

package hello;

public interface Hello {
public String hello (String msg);

}

Claude Duvallet — 76/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Hello World with the EJB 3.0 (2/4)

Definition of the Bean class:
This class is also very simplified.
It does not inherit specific classes.
It must overcome the abolition of local and remote interfaces by
using annotations.
We use an annotation to specify that it is a stateless Session
Bean.

package hello;

import javax.ejb.*;

@Stateless
@Remote (Hello.class)
public class HelloBean implements Hello {

public String hello (String msg){
System.out.println ("Message received: "+msg);
return "Hello "+msg;

}
}

Claude Duvallet — 77/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Hello World with the EJB 3.0 (3/4)

Definition of deployment descriptor: it has also almost nothing
that simplify its writing.

<?xml version="1.0" encoding="ISO-8859-1"?>

<ejb-jar xmlns="http://java.sun.com/xmlns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_3_0.xsd"
version="3.0">

<enterprise-beans>
</enterprise-beans>

</ejb-jar>

Claude Duvallet — 78/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Hello World with the EJB 3.0 (4/4)

Definition of the client: it is also simplified compared with the
same score in the EJB 2.1.

import javax.naming.Context;
import javax.naming.InitialContext;
import hello.*;
import java.util.*;

public class HelloClient{
public static void main(String[] args) throws Exception {

Properties props = System.getProperties();
props.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jnp.interfaces.NamingContextFactory");
props.put(Context.URL_PKG_PREFIXES,

"org.jboss.naming:org.jnp.interfaces");
props.put(Context.PROVIDER_URL, "jnp://localhost:1099");

Context ctx = new InitialContext(props);
Hello hello = (Hello) ctx.lookup("HelloBean/remote");

System.out.println(hello.hello("World"));
}

}

Claude Duvallet — 79/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Lifecycle of the Beans 3.0 (1/3)

Loss of Home interface: references on the beans are done
directly.

Using methods "callback" for the life-cycle management.
The callback methods can be defined:

either directly in the bean: the signature of the method must be
public void method_name (),
or in a class Listener Callback which resembles a home interface.

The class Listener Callback:
all methods are defined in the class.
the methods to take the argument corresponding bean.
it is only needed to import this class in the class of bean
CallbackListener.
the signing of the method must be public void method_name
(Object) where Object is the type of bean.

Claude Duvallet — 80/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Lifecycle of the Beans 3.0 (2/3)

Methods "callback" should be annotated with annotations:
@CallBackListener(String classname)
@PostConstruct
@PreDestroy
@PostActivate
@PrePassivate
@EntityListener(String classname)
@PrePersist
@PostPersist
@PreRemove
@PostRemove
@PreUpdate
@PostLoad

Example 1: Definition of methods "callback" directly into the bean.

@Stateful
public class MyBean {

private float total;
private Vector productCodes;
public int someMethods(){...};
...
@PreDestroy aCallbackMethod() {...};
...

}

Claude Duvallet — 81/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Lifecycle of the Beans 3.0 (3/3)

Example 2: Definition of methods "callback" outside the bean.

First, we defines a class Listener containing methods "callback".

public class MyBeanListener {
@PreDestroy aCallbackMethod() {...};
...

}

Then, we call the "callback listener" in the bean.

@CallbackListener MyBeanListener
@Stateful
public class MyBean {

private float total;
private Vector productCodes;
public int someMethods(){...};
...

}

Claude Duvallet — 82/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Injecting dependence (1/2)

It allows a bean to acquire references to other resources or other
objects of the application.
Previously, he had to have recourse to XML files (with ejb-ref)
and use the JNDI to access a resource:

To access to an EJB, it was mandatory to go through its interface
Home to recover the use interface and its methods trades.

Now is the container which injects these references before any
method related to the life cycle of the EJB or business method is
called.

The container takes care to initialize all the resources the bean
needs.

Claude Duvallet — 83/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Injecting dependence (2/2)

Example recovery of a resource-type database:

// It gets a resource myDB and it affects clientDB
// myDB type is deducted from the variable clientDB
@Ressource (name="myDB")
public DataSource clientDB;

Example recovery of the reference of another EJB:

@EJB
public AddressHome addressHome;

We can also go through the methods set ... to recover a resource:

// / / get the resource named clientDB name and of type DataSources
@Ressource(name="clientDB")
public void setDataSources(DataSources clientDB){
this.sdd = clientDB;

}

// get the resource named myDB and of type DataSources
@Ressource
public void setClientBD(DataSources myDB){
this.clientDB = myDB;

}

Claude Duvallet — 84/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

The interceptor methods

These methods called "interceptors" will be performed at each
call a method of defining these business methods.

They are like:

public Object <methodName>(javax.ejb.InvocationContext)
throws Exception

Any interceptor method must take the following argument
interface:

public interface InvocationContext {
// returns the target bean of the interceptor method
public Object getTarget ();
// returns method triggering the interceptor
public Method getMethod ();
// return parameters of the business method
public Object[] getParameters();
public void setParameters (Object[] params);
public java.util.Map<String, Object> getContextData();
// Execute the following method interceptor or
// method annotated @AroundInvoke
public Object proceed() throws Exception;

}

Claude Duvallet — 85/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

A first example
Lifecycle

Example of interceptor methods

@Stateless
@Interceptor("TestInterceptor")
public class LoginBean {

@AroundInvoke
public Object testInterceptor (InvocationContext invContext) throw Exception {
invContext.proceed ();

}
}

public class TestInterceptor {
@AroundInvoke
public Object myInterceptor (InvocationContext invContext) throws Exception{
invContext.proceed ();

}
}

Claude Duvallet — 86/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Session Beans without state
Session Beans with state

Session Beans without state

The class of Session Beans without state must be annotated with
@Stateless (import javax.ejb.Stateless;).

These beans bear the callback events: PostConstruct,
PreDestroy, but also PostActivate and PrePassivate which
are like the methods ejbActivate and ejbPassivate in EJB
2.x.

The callback method PostConstruct is working after all
dependencies injections made by the container and before the
first call of a business method.

The PreDestroy callback method is called when the instance of
the bean is destroyed.

Claude Duvallet — 87/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Session Beans without state
Session Beans with state

Session Beans without state (Example) (1/2)

The remote interface of Bean:

package calc;

import javax.ejb.Remote;

@Remote public interface Calc {
public double add(double val1, double val2);
public double mult(double val1, double val2);

}

The class of the Bean:
package calc;

import javax.ejb.Stateless;

@Stateless public class CalcBean implements Calc {

public double add(double val1, double val2) {
return val1 + val2;

}
public double mult(double val1, double val2) {

return val1 * val2;
}

}

Claude Duvallet — 88/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Session Beans without state
Session Beans with state

Session Beans without state (Example) (2/2)

The client of the bean:
import javax.naming.Context;
import javax.naming.InitialContext;
import calc.*;
import java.util.*;

public class CalcClient{
public static void main(String[] args) throws Exception {

Properties props = System.getProperties();
props.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jnp.interfaces.NamingContextFactory");
props.put(Context.URL_PKG_PREFIXES,

"org.jboss.naming:org.jnp.interfaces");
props.put(Context.PROVIDER_URL, "jnp://localhost:1099");

Context ctx = new InitialContext(props);
Calc calc = (Calc) ctx.lookup("CalcBean/remote");

double somme = 0;
somme = calc.add(5.643, 8.2921);
System.out.println("Addition de 5.643 + 8.2921 = "+somme);

}
}

Claude Duvallet — 89/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Session Beans without state
Session Beans with state

Session Beans with state

The class must be annotated with @Statefull (import
javax.ejb.Statefull;)

These beans bear the callback events: PostConstruct,
PreDestroy, PostActivate and PrePassivate.

There is an annotation @Remove applicable to a business method,
which involves the destruction of the bean after its call.

Claude Duvallet — 90/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Session Beans without state
Session Beans with state

Session Beans with state (Example) (1/3)

The remote interface of the Bean:

package panier;

import javax.ejb.Remote;
import java.util.*;

@Remote public interface Panier{
public void ajouterArticle(int idArticle);
public void supprimerArticle(int idArticle);
public Vector listerArticles();
public void setNom(String nomClient);
public String getNom();
public void remove();

}

Claude Duvallet — 91/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Session Beans without state
Session Beans with state

Session Beans with state (Example) (2/3)
The class of Bean:
package panier;

import javax.ejb.Stateful;
import javax.annotation.PostConstruct;
import javax.ejb.Remove;
import java.util.*;

@Stateful public class PanierBean implements Panier{
Vector articles;
String nomClient;

@PostConstruct public void initialise() {
articles = new Vector();
nomClient = "";

}

public void ajouterArticle(int idArticle) {
System.out.println ("Ajout d’un nouvel article");
articles.add(new Integer(idArticle));

}

public void supprimerArticle(int idArticle){
System.out.println ("Suppression d’un article");
articles.remove(new Integer(idArticle));

}

public Vector listerArticles(){
return articles;

}

public void setNom(String nomClient) {
this.nomClient = nomClient;

}

public String getNom() {
return nomClient;

}

@Remove public void remove() {
articles = null;

}
} Claude Duvallet — 92/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Session Beans without state
Session Beans with state

Session Beans with state (Example) (3/3)
The client of the bean:
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import java.util.*;
import panier.*;

public class PanierClient {
public static void main(String[] args) throws Exception {

Properties props = System.getProperties();
props.put(Context.INITIAL_CONTEXT_FACTORY, "org.jnp.interfaces.NamingContextFactory");
props.put(Context.URL_PKG_PREFIXES, "org.jboss.naming:org.jnp.interfaces");
props.put(Context.PROVIDER_URL, "jnp://localhost:1099");

Context ctx = new InitialContext(props);
Panier monPanier = (Panier) ctx.lookup("PanierBean/remote");
monPanier.ajouterArticle(65);
monPanier.ajouterArticle(53);

Vector mesArticles = monPanier.listerArticles();
System.out.println ("Il y a "+mesArticles.size()+" article(s) dans le panier !");
Enumeration e = mesArticles.elements();
while (e.hasMoreElements()) {

System.out.println((Integer)e.nextElement());
}

monPanier.ajouterArticle(23);
monPanier.ajouterArticle(18);
monPanier.supprimerArticle(65);

mesArticles = monPanier.listerArticles();
System.out.println ("Il y a "+mesArticles.size()+" article(s) dans le panier !");
e = mesArticles.elements();
while (e.hasMoreElements()) {

System.out.println((Integer)e.nextElement());
}
monPanier.remove ();

}
}

Claude Duvallet — 93/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Message Driven Beans

Class of bean should be annotated with @MessageDriven
(import javax.ejb.MessageDriven;).

The interface of the bean must be of the type that will use the
bean. In most cases, it will be javac.jms.MessageListener.

These beans bear the callback events: PostConstruct and
PreDestroy.

In the case of use with JMS, the method public void
onMessage (Message msg) must be redefined.

We must also define the parameters to be used for connecting to
the destination.

For this, we use the properties: destinationType and destination.

Claude Duvallet — 94/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Message Driven Beans: example (1/2)

The class of the Bean:
import javax.annotation.Resource;
import javax.ejb.*;
import javax.jms.*;

@MessageDriven(activationConfig =
{
@ActivationConfigProperty(propertyName = "destinationType",

propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination",

propertyValue = "queue/MessageBean")
})
public class MessageBean implements MessageListener {
@Resource MessageDrivenContext mdc;
//Méthode de réception des messages
public void onMessage(Message msg) {
TextMessage tm;
try {
if (msg instanceof TextMessage){
tm = (TextMessage) msg;
String text = tm.getText(); System.out.println("Message Bean Reçu: " + text);

}
else {
System.out.println ("Message de mauvais type: "+msg.getClass().getName());

}
}catch(JMSException e) {
e.printStackTrace();
mdc.setRollbackOnly ();

}catch(Throwable te) {
te.printStackTrace();

}
}

}

Claude Duvallet — 95/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Message Driven Beans: example (1/2)

The client:
import javax.naming.*;
import javax.jms.*;
import java.util.*;

public class Client {

public static void main (String[] args) throws Exception {
// Initialisation JNDI
Properties props = System.getProperties();
props.put(Context.INITIAL_CONTEXT_FACTORY, "org.jnp.interfaces.NamingContextFactory");
props.put(Context.URL_PKG_PREFIXES, "org.jboss.naming:org.jnp.interfaces");
props.put(Context.PROVIDER_URL, "jnp://localhost:1099");

Context ctx = new InitialContext(props);
// 1: recherche d’une fabrique de connection via JNDI
QueueConnectionFactory factory = (QueueConnectionFactory) ctx.lookup("ConnectionFactory");
// 2: Utilisation de la fabrique de connexions pour créer une connexion JMS
QueueConnection connection = factory.createQueueConnection();
// 3: Utilisation de la connection pour créer une session
QueueSession session = connection.createQueueSession(false, QueueSession.AUTO_ACKNOWLEDGE);
// 4: Recherche du sujet (topic) via JNDI
javax.jms.Queue queue = (javax.jms.Queue) ctx.lookup("queue/MessageBean");
// 5: Création d’un producteur de message
QueueSender sender = session.createSender(queue);
// 6: Creation d’un message texte et publication
TextMessage msg = session.createTextMessage();
for (int i=0;i<10;i++){
msg.setText("Envoi du message: " + i);
sender.send(msg);

}
}

}

Claude Duvallet — 96/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans (1/5)

They also POJOs but their specifications have been defined in
part because they have undergone many changes in the
standard 3.0.

The annotation @Entity (import
javax.persistance.Entity;) defines the bean as an Entity
Bean.

The bean must have at least one constructor default and will
inherit the interface Serializable to be used throughout the
network for the management of persistence.
You can specify two different methods for managing the
persistence with the option access:

@Entity(access=AccessType.FIELD) allows access directly to
the fields to make persistent.
@Entity(access=AccessType.PROPERTY) requires the supplier
to use the accessors..

Claude Duvallet — 97/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans (2/5)

The primary key can be simple or compound and must be
declared with the annotation @Id.

For example, to obtain a key that automatically increases:
@Id(generate=GenerateType.AUTO).

For the composed keys, we must respect certain principles:
The class of the primary key must be public and have a
constructor without arguments.
If access is type PROPERTY, the class can be either type public is
protected type.
The class must be serializable (implement Serializable).
Implementation methods equals () and hashCode ().
If the primary key is mapped to multiple fields or properties, the
names of key fields of this must be the same ones used in the
Entity Bean.

The annotations can make the object / relational mapping and
management of relations between the entities.

Claude Duvallet — 98/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans (3/5)

When creating an Entity Bean, you must make the mapping of all
its fields. A mapping default occurs when annotation above the
field: @Basic specifies this behavior.

@Table sets the table for the class, she takes as an argument the
name of the table.
@Entity(access=accessType.FIELD)
@Table(name="PAYS")
public class Pays implements Serializable {
@Id(generate=GeneratorType.AUTO) private int id;
@Basic private String nom;

public Pays() {
}

public Pays(String nom) {
this.nom = nom;

}

public int getId() {
return id;

}
}

Claude Duvallet — 99/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans (4/5)

It can be matched to a corresponding value to a specific field of
the database using the annotation @Column and options as name,
which specifies the name of the column, or options to determine if
field can be null,...

@Column(name="DESC", nullable=false)
public String getDescription() {
return description;

}

It exists some relations OneToOne, OneToMany, ManyToOne,
ManyToMany (defined by annotations). In these cases, we must
not forget to specify the columns forming the joints.

@ManyToOne(optional=false)
@JointColumn(name = "CLIENT_ID", nullable = false, updatable = false)
public Client getClient (){
return client;

}

Claude Duvallet — 100/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans (5/5)

The Entity Beans manipulated through an EntityManager.

This EntityManager can be obtained from a Session Bean by
injection of dependency.

@Stateless public class EmployeeManager{
@Resource EntityManager em;

public void void updateEmployeeAddress (int employeeId, Address address) {
//Recherche d’un bean
Employee emp = (Employee)em.find ("Employee", employeId);
emp.setAddress (address);

}
}

Claude Duvallet — 101/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (1/12)

Main principle:
It creates an Entity Bean that will handle persistent objects.
In the bean entity, it establishes a mapping between the attributes
of the bean and a table of the database.
The client does not access directly to the Entity Beans but beans
goes through sessions which will perform the necessary
manipulations on Entity Beans.

The bean of the example:
ArticleBean: it is the Entity Bean.
ArticleAccessBean: it is a Session Bean without state. It is
composed of the class ArticleAccessBean.java and teh
interface ArticleAccess.java.

Claude Duvallet — 102/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (2/12)

The interface ArticleAccess.java: definition of the business
methods.

package article;

import javax.ejb.Remote;
import java.util.*;

@Remote public interface ArticleAccess {
public int addArticle (String libelle, double prixUnitaire, String categorie);
public void delArticle (int idArticle);
public InfosArticle rechercherArticle (int idArticle);
public List rechercherTheArticlesParCategorie (String categorie);
public List rechercherTousTheArticles ();

}

Claude Duvallet — 103/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (3/12)

The class ArticleAccessBean.java: the method addArticle

package article;

import javax.ejb.*;
import javax.persistence.*;
import java.util.*;

@Stateless public class ArticleAccessBean implements ArticleAccess {

@PersistenceContext(unitName="Articles")
EntityManager em;

public int addArticle (String libelle, double prixUnitaire, String categorie){
ArticleBean ab = new ArticleBean ();
ab.setCategorie (categorie);
ab.setLibelle (libelle);
ab.setPrixUnitaire (prixUnitaire);
em.persist(ab);
em.flush();
System.out.println ("AccessBean: Ajout de l’article "+ab.getIdArticle ());
return ab.getIdArticle ();

}

Claude Duvallet — 104/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (4/12)

The class ArticleAccessBean.java: the method delArticle

public void delArticle (int idArticle){
Query query = em.createQuery("DELETE FROM ArticleBean AS a WHERE a.idArticle="+idArticle);

}

public InfosArticle rechercherArticle (int idArticle){
Query query = em.createQuery("SELECT a FROM ArticleBean AS a WHERE a.idArticle="+idArticle);

List<ArticleBean> allArticles = query.getResultList();

ArticleBean article = allArticles.get(0);
return new InfosArticle (article.getIdArticle(), article.getLibelle(),

article.getPrixUnitaire(), article.getCategorie());
}

Claude Duvallet — 105/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (5/12)

The class ArticleAccessBean.java: the method
rechercherTousTheArticles

public List rechercherTousTheArticles (){
Query query = em.createQuery("SELECT a FROM ArticleBean AS a");
List<ArticleBean> articlesbean = query.getResultList();
Vector<InfosArticle> articles = new Vector();
Iterator i = articlesbean.iterator();
ArticleBean article;
while (i.hasNext()) {

article = (ArticleBean) i.next();
InfosArticle infos = new InfosArticle (article.getIdArticle(), article.getLibelle(),

article.getPrixUnitaire(), article.getCategorie());
articles.add(infos);

}
return articles;

}

Claude Duvallet — 106/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (6/12)

The class ArticleAccessBean.java: the method
rechercherTheArticlesParCategorie

public List rechercherTheArticlesParCategorie (String categorie){
Query query = em.createQuery("SELECT a FROM ArticleBean AS a WHERE categorie=’"+categorie+"’");
List<ArticleBean> articlesbean = query.getResultList();
Vector<InfosArticle> articles = new Vector();
Iterator i = articlesbean.iterator();
ArticleBean article;
while (i.hasNext()) {

article = (ArticleBean) i.next();
articles.add(new InfosArticle (article.getIdArticle(), article.getLibelle(),

article.getPrixUnitaire(), article.getCategorie()));
}
return articles;

}
}

Claude Duvallet — 107/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (7/12)

The file of the persistence management: persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">
<persistence-unit name="Articles">

<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>

<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>

</properties>
</persistence-unit>

</persistence>

Claude Duvallet — 108/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (8/12)

The client ArticleClient.java: the method creerArticle

import javax.naming.*;
import javax.rmi.*;
import javax.ejb.*;
import java.util.*;
import article.*;

public class ArticleClient {

public void creerArticle(String libelle, double montantUnitaire, String categorie) {
ArticleAccess ah;
Properties props = System.getProperties();
props.put(Context.INITIAL_CONTEXT_FACTORY, "org.jnp.interfaces.NamingContextFactory");
props.put(Context.URL_PKG_PREFIXES, "org.jboss.naming:org.jnp.interfaces");
props.put(Context.PROVIDER_URL, "jnp://localhost:1099");

try {
Context ctx = new InitialContext(props);
ah = (ArticleAccess) ctx.lookup("ArticleAccessBean/remote");
System.out.println ("Ajout d’un article: "+ah);
int id = ah.addArticle(libelle, montantUnitaire, categorie);
System.out.println ("Affichage de l’article "+id);
afficherArticle(id);

} catch (Throwable th) {
System.out.println("Erreur dans creerArticle: " + th);

}
}

Claude Duvallet — 109/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (9/12)

The client ArticleClient.java: the method
afficherArticle

public void afficherArticle(int numeroArticle) {
ArticleAccess ah;
Properties props = new Properties();
props.put("java.naming.factory.initial", "org.jnp.interfaces.NamingContextFactory");
props.put("java.naming.factory.url.pkgs", "org.jboss.naming:org.jnp.interfaces");
props.put("java.naming.provider.url", "localhost:1099");
try {

Context ic = new InitialContext(props);
ah = (ArticleAccess) ic.lookup("ArticleAccessBean/remote");
InfosArticle infos = ah.rechercherArticle(numeroArticle);
System.out.println("voici les infos sur l’article: " + infos.idArticle);
System.out.println(" id: " + infos.idArticle);
System.out.println(" libelle: " + infos.libelle);
System.out.println(" prix unitaire: " + infos.prixUnitaire);
System.out.println(" categorie: " + infos.categorie);

} catch (Throwable th) {
System.out.println("GereCommande.creerArticle: " + th);

}
}

Claude Duvallet — 110/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (10/12)

The client ArticleClient.java: the method
afficherArticlesParCategorie

public void afficherArticlesParCategorie(String categorie) {

ArticleAccess ah;
Properties props = new Properties();
props.put("java.naming.factory.initial", "org.jnp.interfaces.NamingContextFactory");
props.put("java.naming.factory.url.pkgs", "org.jboss.naming:org.jnp.interfaces");
props.put("java.naming.provider.url", "localhost:1099");
try {

Context ic = new InitialContext(props);
ah = (ArticleAccess) ic.lookup("ArticleAccessBean/remote");
List<InfosArticle> articles = ah.rechercherTheArticlesParCategorie(categorie);
Iterator i = articles.iterator();
InfosArticle article;
while (i.hasNext()) {

article = (InfosArticle) i.next();
afficherArticle(article.idArticle);

}
} catch (Throwable th) {

System.out.println("Erreur dans rechercherArticlesParCategorie: " + th);
}

}

Claude Duvallet — 111/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (11/12)

The client ArticleClient.java: the method
afficherTousTheArticles

public void afficherTousTheArticles() {

ArticleAccess ah;
Properties props = new Properties();
props.put("java.naming.factory.initial", "org.jnp.interfaces.NamingContextFactory");
props.put("java.naming.factory.url.pkgs", "org.jboss.naming:org.jnp.interfaces");
props.put("java.naming.provider.url", "localhost:1099");
try {

Context ic = new InitialContext(props);
ah = (ArticleAccess) ic.lookup("ArticleAccessBean/remote");
List<InfosArticle> articles = ah.rechercherTousTheArticles();
Iterator i = articles.iterator();
InfosArticle article;
while (i.hasNext()) {

article = (InfosArticle) i.next();
afficherArticle(article.idArticle);

}
} catch (Throwable th) {

System.out.println("Erreur dans rechercherArticlesParCategorie: " + th);
}

}

Claude Duvallet — 112/113 Enterprise JavaBeans

Objectives of the norm 3.0
Session Beans

Message Driven Beans
Entity Beans

Entity Beans: example (12/12)

The client ArticleClient.java: the method main

public static void main(java.lang.String[] args) {

ArticleClient a = new ArticleClient ();

a.creerArticle("The miserables", 21, "LIVRE");
a.creerArticle("Celine Dion au stade de France", 120, "CD");
a.creerArticle("Je l’aime a mourir", 28, "LIVRE");
a.creerArticle("La mer", 38, "LIVRE");

// Recherche de l’article 3
System.out.println ("================================");
a.afficherArticle(3);
System.out.println ("================================");
a.afficherTousTheArticles();
System.out.println ("================================");

// Recherche de la categorie
a.afficherArticlesParCategorie("CD");
System.out.println ("================================");

}
}

Claude Duvallet — 113/113 Enterprise JavaBeans

	Where I come from?
	Who am I?
	University of Le Havre
	Location of Le Havre in France
	Location of the University in Le Havre
	Presentation of the University

	My Laboratory

	Enterprise JavaBeans 3.0
	Introduction to the Enterprise JavaBeans
	Architecture of an information system
	Architecture in layers
	Architecture client/server
	3-layers architecture
	Middleware

	J2EE architecture
	J2EE technologies
	The EJB container

	The Enterprise JavaBeans
	Session Beans
	The Entity Beans
	The Message Driven Beans
	EJB Interface

	EJB: some distributed objects
	Example of J2EE application

	Session Beans
	Two kinds of sessions beans
	Implementation class of a Session Bean
	Lifecycle of a bean
	Lifecycle of a Session Bean without state
	Lifecycle of a Session Bean with state

	Collaboration between beans

	Entity Bean
	Introduction
	Persistence of Entity Bean
	Mapping between bean and database
	Types of Entity Beans

	Messages Driven Bean
	Introduction
	Presentation of the Message Driven Beans
	API JMS (Java Message Service)

	The norm 3.0
	Objectives of the norm 3.0
	A first example
	Lifecycle

	Session Beans
	Session Beans without state
	Session Beans with state

	Message Driven Beans
	Entity Beans

