An Introduction to the Repast Software

Recursive Porous Agent Simulation Toolkit

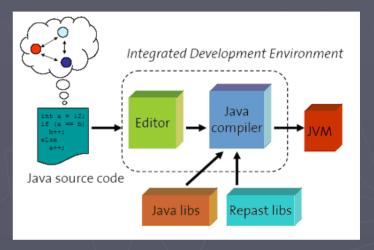
By Andrew Crooks

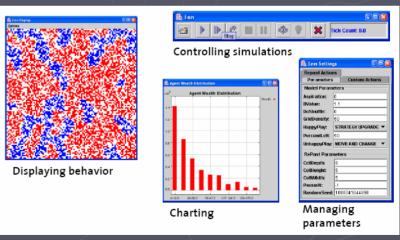
Outline

- What is Repast
- The different types of Repast.
- Repast core features.
 - Space in Repast
- Who is using Repast
- Useful websites and tools.

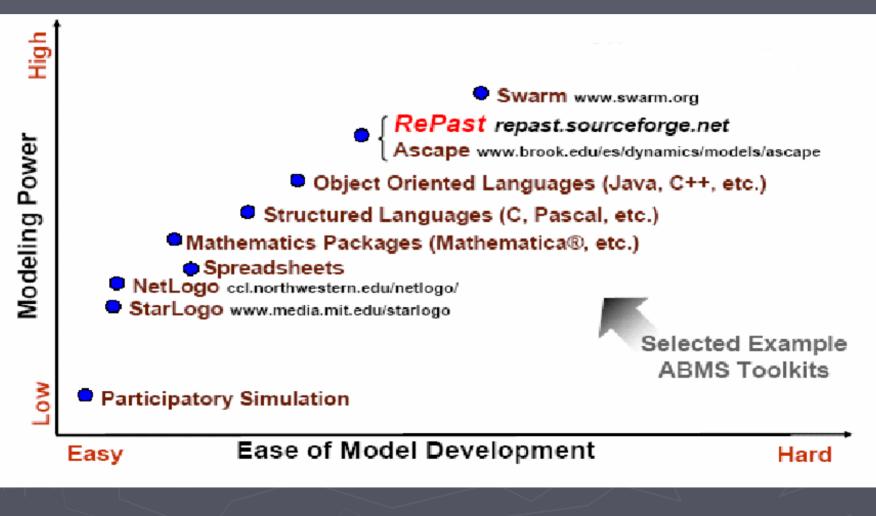
What is Repast?

- Free, <u>open source</u> library of classes for creating, running, displaying and collecting data from agent based simulations.
- Fully Object Oriented.
- Created by University of Chicago's Social Science Research Computing division.
- Guaranteed to be maintained for 5 years.
- Most popular simulation toolkit at present.


What is Repast?

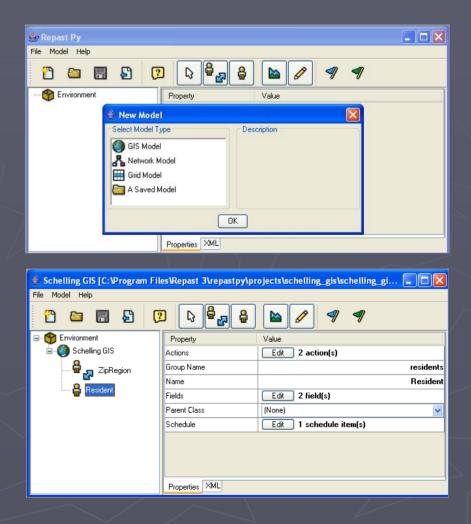

It is a toolkit as it provides:

A collection of tools & structures that are useful for simulation but don't have to be used (=> flexibility and extendable).


Standardised tools/features:

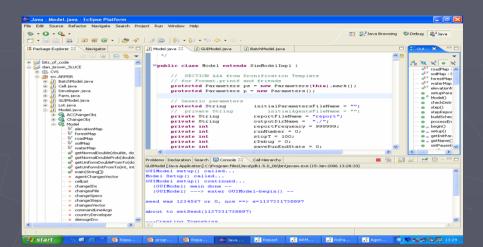
- The Toolbar.
- GUI for manipulating parameters.
- Output data (histogram, time series).
- Displaying agent interaction.

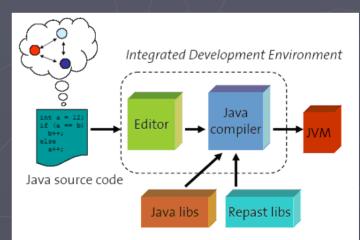
Selected ABM tools


Source: North M et al (2005) Agent-Based Modeling with Agent Analyst

Different strands of Repast.

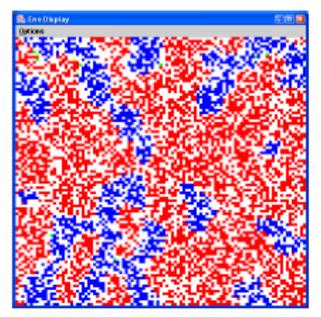
- 3 Flavours of Repast:
 - RepastPy
 - RepastJ
 - Repast.Net
- All have the same core services, which allow ABM to be developed on top of.
- They differ on their underlying platform and development languages.
- Basic programming knowledge is needed.


RepastPy


- Most graphical way to create models via GUI and Python scripting language.
- Designed for rapid development and prototyping of basic models, to learn Repast.
- Basis of Agent Analyst.
- Models Exported to Java if more complex models are desired.

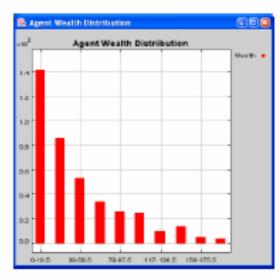
RepastJ

- Java based (platform (OS) independent).
- Contains an extensive list of core classes (GIS).
- Recommend an IDE (Eclipse) to write, edit, compile and debug.
- Once compiled =>run on any computer with JVM.
- Most models are being developed in RepastJ.



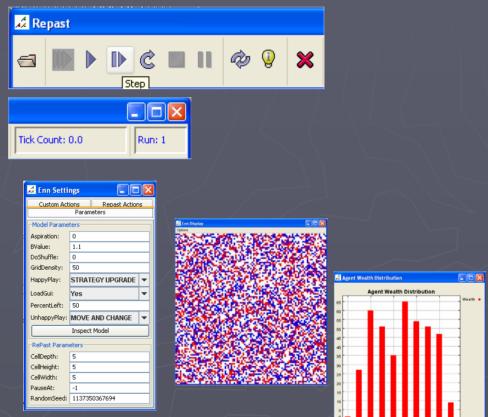
Repast.Net

- Implemented in C# (Microsoft's answer to Java).
- Simulations can be implemented in any .Net language (VB.Net, C++, J#, C#, etc.) and integrated to create Windows-based applications.
- No inbuilt GIS functions => need to link (e.g. ESRI MapObjects). Nor platform independent.
- Good if you don't want to know Java but still want to use Repast.


Repast Framework

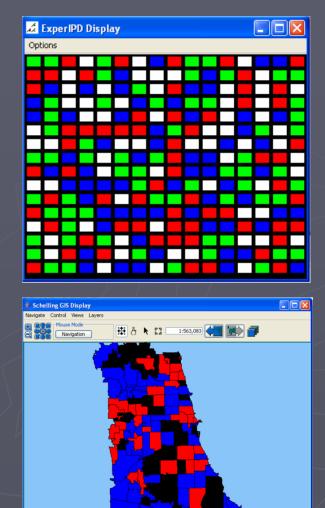
Displaying behavior

Controlling simulations


Charting

🏂 Enm Setting	; E02					
Reparst Actions						
Parameters	Custom Actions					
Model Parameters						
Aspir ation:	0					
BValue:	1.1					
DoShuffle:	0					
GridD-ensity:	60					
HappyPlay:	STRATEGY UPGRADE 🔻					
PercentLeft	50					
UnhappyPlay:	MOVE AND CHANGE 💌					
ReParst Parameters						
CellDepth:	8					
CellHeight:	5					
CelMidth	5					
PauseAt	-1					
RandomSeed:	1080041644896					

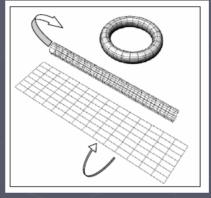
Managing parameters

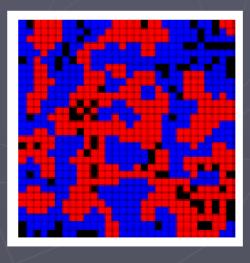

Repast Framework: What does it offer?

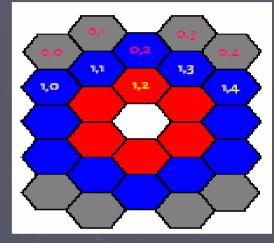
- Skeletons of agents and their environment (not constrained).
- Graphical user interface
- Scheduling of simulations
- Parameters management
- Behaviour display
- Charting
- Data collection
- Batch and single runs
- Utilities for common tasks.
- Sample models (including code) and documentation.

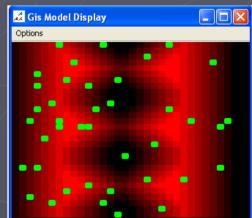
Space in Repast

- 2 main types:
 - Cellular
 - GIS vector
- Space has Two purposes:
 - Contain a Collection of agents (e.g. the world).
 - Define Spatial relationship of agents relative to each other.
- Another type of space is Network space.

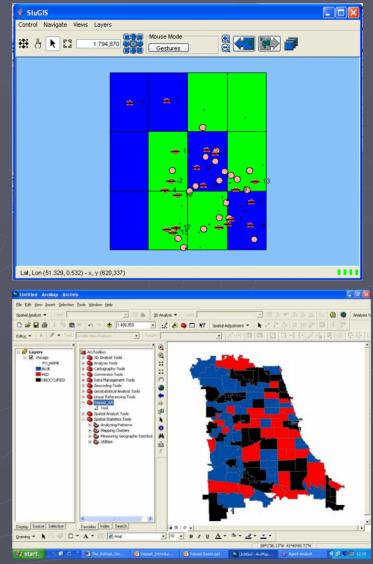



Lat. Lon (42.035, -88.213) - x, y (0.54

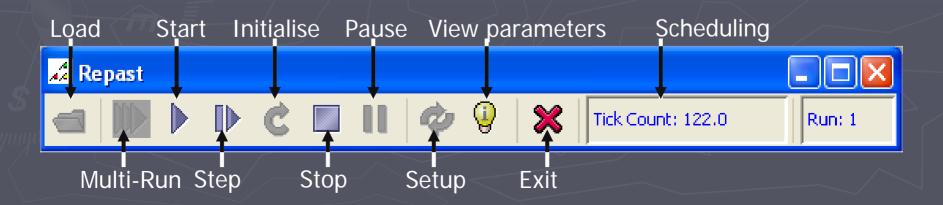

Cellular Space


Boundaries

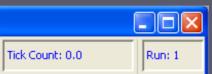
- Grid or Torus
- Cell's shape
 - Regular or hexagonal
- Cell's content
 - One object or a collection of agents
- Also includes Raster-Space (inbuilt functions for reading ASCII & .pgm files)



Vector GIS


- More complicated (own packages) but highly adaptable.
- Agents either
 - Points (Generic agent).
 - Polygons (Vector agent) (static) => detailed boundaries.
- Can be combined.
- Needs its own displays: ESRI or OpenMap.

Inbuilt GUI: Controlling Simulations


Batch or GUI

- Different purpose depending on context
 - **Batch mode**: allow variables to be changed through parameter files (.txt) used for multiple runs.
 - **GUI mode**: show the variables in the control panel (Gives greater user interaction).
 - GUI give:
 - Customised parameter panel
 - Dynamic Graphs
 - Graphical Displays
 - Probes

Inbuilt functions for Controlling Simulations: Scheduling

• Built in Scheduler.

- Set of methods which allow certain actions to be carried out at a specific <u>time</u> and/or specific order e.g. Agent to move 1 cell each time step then update display.
- Scheduled actions can change the agents state.

public void buildSchedule(){

ActionGroup group = new ActionGroup(ActionGroup.SEQUENTIAL);
group.addAction(new PreStep());//e.g.: get landuse & update displays

group.addAction(new Step());// e.g.: move if unhappy

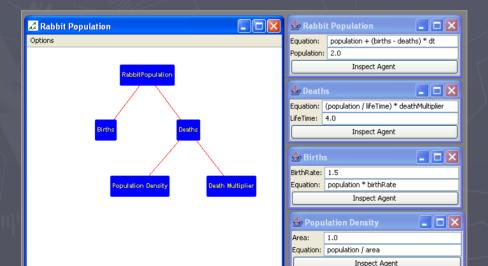
group.addAction(new PostStep());// e.g.: add new agents & update displays
group.addAction(new GISModelUpdateLanduseGraph());

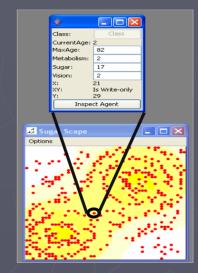
schedule.scheduleActionBeginning(1, group); schedule.scheduleActionAtInterval((double)5, this, "saveShapefile", Schedule.LAST); schedule.scheduleActionAtInterval((double)1, this, "createShapefileForAgents", Schedule.LAST schedule.scheduleActionAtPause(recorderLanduse, "writeToFile"); schedule.scheduleActionAtEnd(this, "saveGALFile"); schedule.scheduleActionAtEnd(recorderLanduse, "writeToFile");

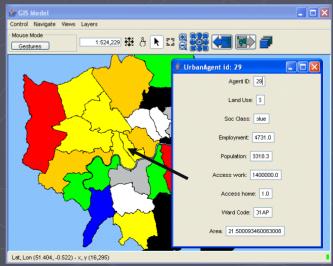
Controlling Simulations Parameters Management : GUI

- To adjust parameters at the start-up or when the simulation is paused.
- Can be applied to both models (e.g. world size) and agents (e.g. preferences).
- Setup through predefined descriptors variable of SimModel
- Inbuilt functions for dropdown lists, sliders and text

🔏 ExperIPD	Model (1	Tutorial	Step #	5) Setti	ngs 🗌				
Parameters	ustom Acti	ons Repa	ast Actio	ns					
Model Parameters									
Topology:	Torus								
Neighborhood:	Von Neuman								
	Moore								
WorldSize:	Von Neuman								
	10	40		70	100				
					_				
PALLC:		Ť 25	ا 50	 75	100	25			
	Ŭ				100				
PTFT:		— Ų —			_	25			
FIFT.	ó	25	50	75	100	20			
PATET:	1	Y	1		_	25			
	0	25	50	75	100				
					_				
PALLD:	 0	Y 25	ا 50	 75	100	25			
	Ů	25	50	/5	100				
PAdapt:		_Ū			_	20			
i Hooper	Ó	25	50	75	100	20			
Inspect Model									
-RePast Param	eters								
CellDepth:	5								
CellHeight:	30								
CellWidth:	30								
PauseAt:	-1								
RandomSeed:	1								

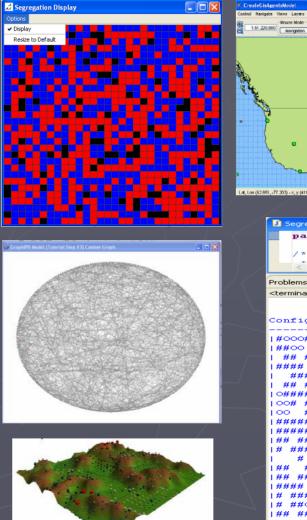

Controlling Simulations: Custom Actions

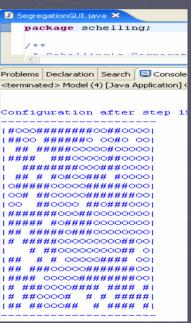

- Modify the simulation while it is running.
- Setup through modelManipulator.
- Works for buttons, check boxes, sliders.


	🔏 Ехр	erIP	D Mo	del (T	utor	ial Ste	p #5)	Settir	ngs				
	Parame	ters	Custo	m Actic	Ins	Repast A	Actions						
	Simulation speed												
	0	 10	 20	 30	 40	 50	 60	 70	80	 90	 100		
I	Refresh												
	✓ Show average payoff												

GUI Parameters: Probes

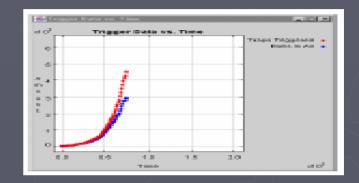
- Allow the user to view and manipulate single agents.
- Altering simple equations.
- Feeds back into the simulation

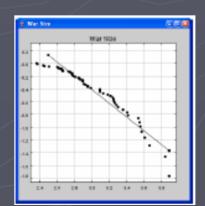




Displaying Behaviour in Repast

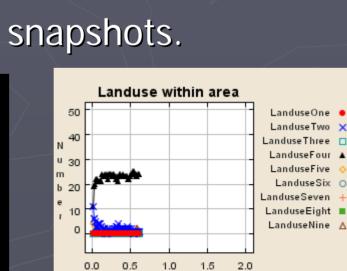
- A collection of classes for the Graphical presentations of agents and their environments,
- Can be updated. whenever.
- Can be extended (Java3D).
- Don't have to be displays.

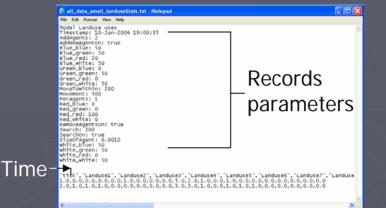


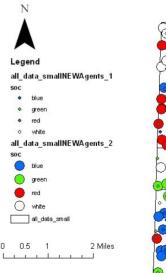


Inbuilt Charting options

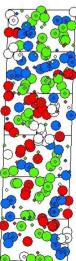
- Time series: used defined variable (s) over time.
- **Histograms**: bar chart showing a variable distribution.
- Scatter plot: snapshot of two variables
- Can be extended e.g. JFreeChart






Inbuilt Data Collection

- Inbuilt data recording facilities (Data Recorder) to .txt files (as comma, space or tab delimited).
- Movies and snapshots.



Time

×10[°]

Who is using Repast?

- Designed for social scientists but not confined to it
- Examples include:
 - Politics: the rise and fall territories.
 - Economics: Banking strategies, evolution of firms, dynamics between firms, electricity markets
 - Segregation, Pedestrian modelling, disease transmission,
 - Physical environment: water shed modelling
 - Landuse models: SLUCE (change at urban rural fringe), LUCITA (Amazon farming), urbanisation.
 - Extensions also:
 - GeoGraph (3D extensions), AgentCell (biochemical reactions 3D) and parallel processing.

Useful Java libraries

- OpenMap: extend the displays.
- **OpenForecast**: a regression library.
- Log4J: useful for debugging code.
- Java Topology Suite: classes and methods for 2D spatial analysis functions.
- JFreeChart: More sophisticated chart construction than Repast.
- Can use any Java library and choose only the Repast tools you want.

More information / examples

- Repast Website: http://repast.sourceforge.net/
- How to create a RePast model (step by step instructions on the basics of repast) by John. Murphy.<u>http://www.u.arizona.edu/~jtmurphy/H2R</u> /HowTo01.htm
- International Conflict Research (repast examples and most linked to papers and theory, lecture slides)
 <u>http://www.icr.ethz.ch/teaching/archive/compmod</u>

els/ss2004/models

Summary

- Why use it?
 - Inbuilt functions but highly customisable
 =>if a tool does not exists create one.
 - Need to know <u>some</u> programming.
 - General purpose, not constrained by the application.
 - Large user group, documentation, examples.
 - Use of freely available Java libraries.