
GraphStream: a Dynamic Graph Library

Frédéric Guinand
email:Frederic.Guinand@univ-lehavre.fr

web: http://litis.univ-lehavre.fr/∼guinand

1 Introduction
GraphStream is a java library for generating and visualizing dynamic graphs. It offers an API for
implementing algorithms for the manipulation and the analysis of dynamic graphs. In few lines you
can: create a graph and display it using a specific style (CSS-like). You can also create a graph from
a formatted text file (DGS files, a text-based description of the graph, nodes and links). The layout of
the graph is automatic but you can force the engine to follow some position indications if needed (we
will see that for euclidean graphs and grids/toruses for instance).

This document aims at introducing you this library that will be used during the whole course for
illustrating the lectures and for developing examples.

2 Programming Environment
For the labs we will consider eclipse as your IDE and GraphStream as your dynamic graphs library1.
Thus, all the examples will be developed on eclipse.

http://graphstream-project.org

2.1 GraphStream jar files
You can get the java archives of GraphStream, by downloading them on:

• http://graphstream-project.org or on

Only three jar files are needed for using graphstream:

• gs-core-1.3.jar – the core jar file including all the fundamental graph classes
1you are free to use another IDE as soon as you know how to use it for java programming and for using external jar

files in your java classes

1

• gs-algo-1.3.jar – an archive including classical graph algorithms (shortest part, spanning tree,
etc.)

• gs-ui-1.3.jar – this archive contains the graphstream classes necessary for displaying a graph
and interacting with it

2.2 Setting up a new GraphStream project
Create a new java project:

Create a new package and add the GraphStream jar files as external archives:

2

We are now ready to start!!

3 API Presentation

3.1 Fondamental Elements
Using GraphStream, a 1-graph, a graph in which two vertices are only connected by one edge or two
arcs in opposite direction, is an instance of the object SingleGraph. A vertex in GraphStream is
an instance of the Node object and an edge/arc is an instance of the Edge object.

For creating/instantiating any of these objects it is necessary to import them:

import org.graphstream.graph.implementations.SingleGraph;

import org.graphstream.graph.Node;

import org.graphstream.graph.Edge;

For starting:

package iwocs;

import org.graphstream.graph.implementations.SingleGraph;

public class TemplateGS {

SingleGraph myGraph;

public TemplateGS(String[] args) {
myGraph = new SingleGraph("template graph");

}

/** the main just chooses the viewer and instantiates the class */

public static void main(String[] args) {
System.setProperty("org.graphstream.ui.renderer",

"org.graphstream.ui.j2dviewer.J2DGraphRenderer");
new TemplateGS(args);

}
}

3

3.2 Graph/Node/Edge Creation
• SingleGraph graph = new SingleGraph("graph")

creates an instance of a SingleGraph. It contains neither vertices nor edges. For adding new
nodes and edges, the API offers several methods. The main ones are:

• Node thenode = graph.addNode("idf")

returns a Node which identifier is idf. Two distinct nodes cannot have the same identifier.
For verifying the identifier of a node just call the method thenode.getId() on it.

• Edge theedge = graph.addEdge("u--v", u.getId(),v.getId())

returns an Edge which identifier is u--v. This edge is a non oriented link (thus not an arc). For
adding an arc, the method should add an additional boolean parameter positioned at true:
Edge arc = graph.addEdge("u-->v",u.getId(),v.getId(),true). It is also
possible to create an Edge using directly the references of the Node extremities:
Edge arc = graph.addEdge("u-->v",u,v,true), where u and v are Node refer-
ences.

• For removing a give Node from the graph: graph.removeNode(nodeIdentifier)

• For removing a given Edge: graph.removeEdge(edgeIdentifier)

• For removing an attribute: nodeOrEdge.removeAttribute("nameOfAttribute")

• For testing the existence of an attribute: nodeOrEdge.hasAttribute("nameOfAttribute")
return true if the attribute exists and false otherwise

3.3 Graph Display
For displaying the graph, a simple call to a method is enough. The method accepts one optional
boolean parameter.

graph.display(boolean)

If positioned at true (the default value), the layout will be automatic which is very convenient if you
don’t have any constraints on the position of your Nodes. If the boolean parameter is positioned at
false, you will have to fix the position of your Nodes by adding their coordinates:

4

Node n = graph.addNode("u");
n.addAttribute("x",230);
n.addAttribute("y",400);

For instance, for a grid this can lead to the following displays:

graph.display(true); graph.display(false);

3.4 Exercise 1
Modify the TemplateGS.java file in order to:

1. add four nodes {A,B,C,D} and the edges {A,B}, {B,C}, {C,D} and {D,A}, and display
this graph using automatic display.

2. add Attributes ”x” and ”y” to each node and choose a display that respects these coordinates.

3.5 Node and Edge Attributes
It is possible to attach to each Node/Edge some information. It is done through the addition of an
Attribute given as a pair (key, value). For instance if you want to attribute a cost to an egde e:

e.addAttribute("cost",10.5);

There are several attributes that are already defined in GraphStream: ui.label, ui.style,
ui.stylesheet, x, y.

For displaying the name given to each Node and Edge you just have to set the ”ui.label” attribute
to these elements. Example:

SingleGraph sg = new SingleGraph("first");
Node u = sg.addNode("u");
Node v = sg.addNode("v");
v.addAttribute("ui.label","node v");
Edge e = sg.addEdge("u-->v", u, v, true);
e.addAttribute("ui.label","arc u-->v");

It is possible to modify the style of the graph by modifying the attribute ui.stylesheet. But it is
also possible to apply some style to the vertices and/or of the edges by modifying the value of the
attribute ui.style. Examples:

5

shortStylesheet = "graph { fill-color: lightblue; "
+ "padding: 40px; }";

graph.addAttribute("ui.stylesheet",shortStylesheet);
nodeStyle = "fill-color:#ffaabb; shape:cross;"

+ "size: 30px;";
Node n = Toolkit.randomNode(graph);
n.addAttribute("ui.style",nodeStyle);

But it is also possible to define the style of the whole graph as a global String variable:

protected String myStylesheet =
"graph { fill-color: white; padding: 40px; }"
+ "node { size: 10px; shape: box; fill-color: red; }"
+ "edge { size : 2px; fill-color: black;}";

3.6 Exercise 2
Starting from the graph created in Section 3.4:

1. change the style of the graph such as using ”lightblue” as the background color

2. change the style of on randomly chosen node such that its shape is a cross, its size is 30 pixels
and its color is another color defined in hexadecimal.

4 Save/Restore a Graph to/from a File
GraphStream offers the possibility to read and display a graph from a dgs formatted file and to save a
graph to a file into the same format. GraphStream first purpose was to allow a dynamic representation
of graph. For that, a dynamic graph is considered as a serie of events modifying the graph (nodes
and/or edges addition/deletion/modification). From that results the text-based DGS format.

4.1 DGS format
• an, cn, dn is for adding, changing and deleting a node

• ae, ce, de is for adding, changing and deleting an edge

• cg is for changing some graph properties (attributes for instance)

• st i corresponds to the begining of the ith step (each step corresponds to a set of ”simultane-
ous” events)

The full specifications can be found at:
http://graphstream-project.org/doc/Advanced-Concepts/The-DGS-File-Format/

Examples:

• an n3 ui.label="the node" x=34 y=56

6

→ add to the graph a Node with ”n3” as identifier, ”the node” as name (which will be displayed
aside the node) and with coordinates 34 for the x axis and 56 for the y axis

• ce e34 ui.style="size:3px; fill-color:red;"

→ change the attribute ”ui.style” of the edge which identifier is ”e34”. The new style specifies
that edge will be red with a thickness equals to 3 pixels

• cg ui.quality=true ui.antialias=true

→ change the attributes ”ui.quality” and ”ui.antialias” of the graph. Both attributes are used for
a better rendering of the display of the graph.

DGS003
st 0
cg ui.stylesheet="graph{fill-color:lightblue;} node{fill-color:red;} edge{size:2px;}"
st 1
an n1 x=10 y=20 ui.label="n1" ui.style="fill-color: green;"
an n2 x=20 y=10 cost=38 ui.label="n2"
an n3 x=20 y=20 ui.label="n3"
st 3
ae e12 n1 n2

DGS004 DGS file format version 4
null 0 0 for retro-compatibility with older formats
st 0 step 0 (not mandatory for static graphs)
cg ui.stylesheet=”...” change graph, attribute ”ui.stylesheet” has value ”...”
st 1 step 1
an n1 x=10 ... add Node with identifier n1 and attribute ”x” has value 10...
ae e12 n1 n2 add Edge which identifier is e12 linking nodes n1 and n2

7

4.2 Reading a Graph from a File
For creating a graph from a file, and if your graph is a static graph, you can read it at once using only
one line of code surrounded by statement for catching exceptions.

try {
myGraph.read("path/to/dgsfile.dgs");

} catch(Exception e) { }

4.3 Writing a Graph to a File
As for reading, writing a graph to a dgs file requires only one line of code:

graph.write("path/to/file.dgs");

Well, actually it also need to be surrounded by a
try { ... } catch(IOException ioe) {...} statement

4.4 Graph-Selfie
When you work with graphs, it is sometimes interesting to save the current layout of the graph as an
image, this can be done thanks to the method below.

public void screenshot(SingleGraph graph, String pathToImage) {
if(graph != null) if(graph.getNodeCount() > 0) {

FileSinkImages fsi = new FileSinkImages(
FileSinkImages.OutputType.PNG,
FileSinkImages.Resolutions.SVGA);

fsi.setLayoutPolicy(
FileSinkImages.LayoutPolicy.COMPUTED FULLY AT NEW IMAGE);

try {
fsi.writeAll(graph, pathToImage);

} catch (IOException e) { e.printStackTrace(); }
}

}

When manipulating dynamic graphs it is also possible to record videos from the evolution of the
graph. This will be considered in a future lab session.

4.5 Exercise 3
Preliminaries:

• Save the following text in file savedgraph.dgs:

8

DGS003
"example" 0 0
an "A"
an "B"
an "C"
ae "AB" "A" "B"
ae "BC" "B" "C"
ae "CA" "C" "A"
ce "AB" label="AB"
ce "BC" label="BC"
ce "CA" label="CA"

• Create a directory ”dgs” into your project and move the file into that directory.

• Create a directory ”pictures” into your project, all the images will be stored in that directory.

todo:

1. write the lines of code for reading and displaying the graph.

2. Save an image of the graph into the file "graphbeforemodifications.png" (for in-
stance)

3. Modify this graph by adding two vertices and two edges and by changing the style of the graph
(background color for instance).

4. Save another image ("graphaftermodifications.png" for instance) of the new graph

5. Save that graph into the dgs format and store it as "modifiedgraph.dgs (for instance) in
the ”dgs” directory

4.6 Exercise 4
Create a new java class Tools.java in the iwocs package with three methods which prototypes
are:

• public final static SingleGraph read(String);

→ this method has one parameter: the dgs filename containing the dgs file description, and it
returns an instance of SingleGraph.

• public final static void write(SingleGraph, String);

→ this method has two parameters, a non null instance of SingleGraph and the filename
where the dgs description of the graph will be written.

• public final static void screenshot(SingleGraph, String);

→ this method has two parameters: a non null instance of SingleGraph and the filename of
the image of the graph.

and modify the code of TemplateGS.java accordingly.

9

	Introduction
	Programming Environment
	GraphStream jar files
	Setting up a new GraphStream project

	API Presentation
	Fondamental Elements
	Graph/Node/Edge Creation
	Graph Display
	Exercise 1
	Node and Edge Attributes
	Exercise 2

	Save/Restore a Graph to/from a File
	DGS format
	Reading a Graph from a File
	Writing a Graph to a File
	Graph-Selfie
	Exercise 3
	Exercise 4

