How to model a real-time database?

Nizar Idoudi, Claude Duvallet and Bruno Sadeg
UFR des Sciences et Techniques
25 rue Philippe Lebon, BP 540, 76 058 Le Havre Cedex, FRANCE
{nizar.idoudi, claude.duvallet, bruno.sadl@univ-lehavre.fr

Nada Louati, Rafik Bouaziz and Faiez Gargouri
MIRACL-ISIMS, BP 1030, 3018 Sfax, TUNISIE
{Raf.Bouaziz, Faiez.Gargoy@fsegs.rnu.tn

Abstract the state of the environment. At this time point, we say that
this data value is temporally inconsistent. Temporal consi
Real-time databases deal with time-constrained data andtency can be measured in two wayabsolute consistency
time-constrained transactions. The design of this kind of andrelative consistencji6]. A data item is considered ab-
databases requires the introduction of new concepts to sup-solutely consistent if and only if its age is within a spedfie
port both data structures and the dynamic behaviour of the time interval. It should be often updated. The age repre-
database. In this paper, we give an overview about differ- sents the time duration between its timestamp and the cur-
ent aspects of real-time databases and we clarify require- renttime. For example, the speed age value must not exceed
ments of their modeling. Then, we present a frameworkfive seconds; it verifies its absolute consistency congtagin
for real-time database design and describe its fundamen-long as it is no more than five seconds old. Relative consis-
tal operations. A case study demonstrates the validityef th tency concerns data derived from other ones. For example,
structural model and illustrates SQL queries and Java code the lane of an aircraft is derived from the location and the
generated from the classes of the model. altitude data items. Its temporal consistency depends-of lo
cation and altitude data consistency. So, real-time daa ar
subdivided into two typessensor dataand derived data
1. Introduction [18]. Sensor data are data issued from sensors. Derived
data are data computed using sensor data (e.g., lane data).

Real-time databases have to deal with time-constrained Transactions in a real-time database environment are
data and time-constrained transactions. They are now beingilso subdivided into two classespdate transactionand
used for several applications such as space project controluser transaction§l6]. Update transactions are used to up-
process control, financial market and air traffic controlsys date the values of real-time data in order to reflect the state
tems. In each of these time-critical applications, datauabo of the real world. They are executed periodically to up-
the target environment must be continuously collected from date sensor data, or sporadically to update derived data [8]
the real-world and processed in a timely manner to gener-User transactions, representing user requests, arrivé ape
ate real-time responses. A real-time database has two disedically. They may read or write non real-time data, but
tinguishing features: the notion of temporal consistetéda only read real-time data.
and the ability to place real-time constraints on transasti Real-time databases are therefore specific. Their design
Some of its data must not only be logically consistent, but need appropriate concepts and tools which are not available
also temporally consistent, i.e., they must closely refleet ynder systemic or object oriented methods. UML, the most
current state of the controlled environment. However, dataysed modeling language nowadays, can not, in its standard
are collected at discreet moments. Hence they often repform, satisfy the requirements of such design. Indeed, it
resent an approximation of the reality. As time advancesis a general language used to model object-oriented appli-
continually, a real-time data value becomes less and less accations across a wide range of domains. Nevertheless, its
curate, until the moment where it does not reflect any more extension mechanism, based on the concepts of profile and

*This work is supported by the Haute-Normandy regRPER project stereotype, allows it, if enhan_ced, to support new Concep_tS
“Logistic Transport Network and Information Techriics and tools, and to become suitable for a particular domain

needing specific software engineering activities. Regentl for specifying RTSORAC [21] object, calledRT-Object
an UML profile for Modelling and Analysis of Real-Time However, the RT-Object package is based on the Extension
and Embedded systems (MARTE) has been standardizedMechanisms package of UML1.3 which is a past standard.
by the OMG [12] [3]. However, the design of real-time Furthermore, imprecise computation encapsulated within
databases differs from the design of conventional read-tim the RTSORAC object is defined in the contextEgsilon
systems. The designers of real-time databases must conSerializabilityon transactions [17], and does not support the
sider both temporal aspects of data and timing constraintsnotion ofQoDintroduced in [1]. Th&)oD concept allows a
of transactions [20] [8]. The design of this kind of datalsase robustand controlled behavior of real-time databasesduri
is thus performance-and semantic-dependent. It must contransient overloads, based Baedback Control Real-Time
sider factors such as sensor data, derived data and Qualit$scheduling11].
of Data (QoD) management, temporal semantics in transac- The framework proposed in this paper supplies, like RT-
tion scheduling algorithms, concurrency control protsgol Object, concepts and tools for real-time database model-
disk caching, and buffer management protocols to meet theing. But, unlike RT-Object, UML-RTDB, the profile of
timing constraints defined by real-time applications. Then this framework, supports the QoD concept that we define
which concepts and tools are suitable to define the desigrfor real-time attributes [8], on one hand, and it contains
of real-time databases? How to define and to implement ana set of stereotypes to express dynamic semantics of real-
UML profile supporting these requirements? How to imple- time attributes and real-time object features, on the other
ment a real-time database model under a technical environhand. These stereotypes are defined under UML.2.1.2 Pro-
ment? This paper deals with these issues and aims to brindiles package [15]. In addition, UML-RTDB allows to spec-
contributions in real-time databases design. ify two kinds of real-time attributessensorattributes and
The paper is structured as follows. Section 2 briefly cov- derivedattributes, in order to satisfy the current real-time
ers related works. Section 3 describes our real-time object applications requirements.
oriented data model. Section 4 presents a set of stereotypes
that allows our UML-RTDB profile to express real-time
database features in a structural model. Section 5 quote
different mapping rules of an UML-RTDB diagram to an
object relationship schema. Finally, the last section draw
some conclusions.

3. Real-time object-oriented data model

Real-time object

Mailbox
I
2 . R e | ated Wo rk E‘ I Local Controller

External
interface

(0 TPOWRIN

I AY VAN

() zpoya
0 epouiaiy

I A YaVAN
| AYaVEN

/ .
y K}

I
|
Real-time Real-time
methods attributes

As the need for using real-time database grows, there y—
is a need to define an UML profile supporting real-time Method2
database requirements. Several UML approaches were al- Method3
ready proposed to take into account the real-time system
requirements, such a$ML-RT [19], RT-UML [5], UML-
SDL[9] and ACCORD/UML[10]. For example, the basic
concepts oRT-UML were integrated in the standard UML
through the UML profile for Schedulability, Performance,
and Time (denoted SPT profile) [13], which is recently re-
placed by the UML profile for Modeling and Analysis of

Real-Time and Embedded Systems (MARTE) [12]. How- porate time-constrained data and time-constrained tcansa

ever, UML. constructs used b)_/ these approachgs do not SUPfions of real-time databases [8]. Thus, a real-time datbas
port real-time database requirements. A real-time da&bas
: . X) is a collection of real-time objects (RTO) which are used
is a database in which both the data and the operations upon
- . .“*to manage time-critical dynamic systems in the real world.

the data may have timing constraints [16]. In fact, realktim . . : .)

. o Real-time objects are the real-time object-oriented degab
databases have all requirements of traditional databases, - . .
entities. They represent dynamic entities of time-critica
such as the management of accesses to structured, share . L ; !
. : ynamic applications in the real world [7]. We define a
and consistent data, but they also require management o

. . . . real-time object as an extension of the real-time object, as
time-constrained data and time-constrained transadi&ns used in the ACCORD/UML approach [6]. It encapsulates
To the best of our knowledge, there is only one UML- '

bas_ed proposal for real-time data_bases modeling [4]. IN" 1rTSORAC: Real-Time Semantic Objects Relationships And-Con
their work, the authors have defined an UML package straints

Figure 1. Aircraft object.

Our work is based on a particular object model, named
real-time object-oriented data modeain which we incor-

time-constrained data, time-constrained methods and con- e Value: it indicates the attribute value written by the

currency control mechanisms. As shown in figure 1, each related update method. Itis of the tylmeger, Realor
real-time object is made of four components: (i) a set of Stringin the case of the metaclaBS Integer RTReal
real-time attributes, (ii) a set of real-time methods) (@i or RTString respectively.

mailbox, and (iv) a local controller [7] [8]. . N : .
() [7118] e Timestamp: it indicates the last time at which the at-

_ tribute’s value was updated.
4. The UML-RTDB profile

<<profile>>UML-RTDB

In this section, we present an UML profile, enti-

tled UML-RTDB, which is a specialized variant of the <<dataType>> <<dataType>>
UML2.1.2 for real-time database applications. The main RTReal RTlnteger
aim of our proposal is to supply to the designers of real-time Value: Real Value: Integer
databases UML extensions to support real-time database re- Timestamp: Time Timestamp: Time
quirements. This UML extension is specified in the UML

metamodel by a stereotype. The stereotype define how an <<dataType>>

existing metaclass may be extended, and enables the use RTString

of platform or domain specific terminology or notation, in Value: String

addition to the ones used for the extended metaclass [15]. Timestamp: Time

In our work, UML-RTDB stereotypes extend metamodel

classes with specific sensor and derived attributes, specifi

periodic and sporadic operations and a specific real-time Figure 3. Data types of UML-RTDB profile.
class that allow the design of class diagrams for real-time

databases. We base our proposal orEkiension relation-

shipproposed in UML2.1.Profilespackage [15].
4.2. Sensor and Derived stereotypes

4.1. Real-time data type
yP A real-time attribute may be eitheensoror derived[8].
] .) .] To the best of our knowledge, there is no work which char-
As defined in [8], each real-time attribute value is char- 5cterizes derived data byMaximum Data Error(MDE).
acterized by a timestamp, which indicates the time at which yyowever, since derived data are the data calculated from
it was last updated. So, for each real-time attribute value sensor data which have already some deviation from their
corresponds a timestamp, which distinguishes it from other5yes in the real world (MDE), then derived data have auto-
attribute’s values. Thereby, as illustrated in figure 2 f@ t matically some deviation from their values in the real world
attributeSpeedthe values of th& D andMDE fields are the (MDE). For example, a data read from a sensor has an MDE
same for all real-time attributes. But, the values of ® 4t 1m. If a derived attribute is based on the formula 2 * the

field change for each real-time attribute. sensor data, it would then have an MDE of 2m. For this rea-
son, in our work, we characterize derived data by an MDE.
Speed In the general case derivation of the MDE value would not
cv s VD MDE be as simple, but it remains an interesting and innovative
(Current Value) (TimeStamp) (Validity Duration) Maximum Data Error) perspective of research.
As shown in figure 4, we define two stereotypes,
900 10252 0s 2s < Sensor> and < Deriveds, to declare respectively sen-
920 10:25:8 6s 2s sor attributes and derived attributes in the class diagrams
Each of these stereotypes is characterized by two proper-
925 10:25:14 6s 2s ties:

¢ Validity duration: it indicates the amount of time dur-

Figure 2. lllustration of the dynamic semantic . g .) ; . .
J y ing which the attribute value is considered valid. It is

of a real-time attribute.

of the typelnteger
For this reason, we define three new UML data types, o Maximum data error: it indicates the maximum devi-
called RTinteger RTRealand RTString that describe the ation tolerated between the current attribute value and
type of real-time attribute values. As shown in figure 3, the updated value. It is of the typeteger

these metaclasses are characterized by two properties:

<<profile>>UML-RTDB has to take into account the management of all these compo-

nents. That's why we define @RealTimeClass- stereo-

<<5§%f3033r’pe>> type (cf. Figure 8) in order to deal with the time-constraine

<<metaclass>> - — data, time-constrained operations, parallelism, and con-
Property \l\;ahc.i'ty Dul;atlonélme_%etr currency property inherent to real-time databases. The

aximum Data Error: Integer <RealTimeClass- stereotype is added to classes in or-

der to specify that their instances will encapsulate rigad:t

<<stereotype>> data, regl-time operations, and a local concurrency cbntro
Derived mechanism.

<<metaclass>>
Property Validity Duration: Integer

Maximum Data Error: Integer

<<profile>>UML-RTDB

Figure 4. Definition of Sensor and Derived <<metaclass>> <<stereotype>>
stereotypes Class RealTimeClass

4.3. Periodic and Sporadic Stereotypes . o]
Figure 6. Definition of RealTimeClass stereo-

. . type.
We characterize the UML-RTDB profile by three stereo- P

types, < Periodic>, < Sporadic>> and < Aperiodic>, to
declare respectively periodic methods, sporadic methods

and aperiodic methods [8] in the class diagrams. As illus- 5. From an UML-RTDB diagram to an Object
trated in figure 5, we define an abstract stereotype, named Relationship schema

< Updates>, that generalizes these latter stereotypes. It is
characterized by ®eadline which indicates the last time
by which the method execution must be completed. In ad-
dition, we characterize thePeriodics> stereotype by &e-

riod in order to define the periodicity of the methods.

Many development tools are based on relational
databases [2]. Although the relational model is useful
for many applications, we believe that it is not as well-
suited as an object-oriented database model for applicatio

<<profile>>UML-RTDB t_hat re_quire complex data management, have cqmplex rela-
tionships between data, a suitable support for timing con-
<<metaclass>> <<stereotype>> straints, and more scheduling flexibility than serialifigbi
Operation Update

can provide. In the relational model, the mapping of an
UML-RTDB class generates a large number of tables. So,
gueries need many joins to retrieve needed data, and their

Deadline: Intege

i execution becomes expensive (i.e. a large amount of time).
The main reason of this inadequacy is that relational model
<<stereotype>>| | <<stereotype>>| | <<stereotype>> can deal only with simple data. In other words, relational
Periodic Sporadic Aperiodic model use a tabular representation of the real-word enti-
Period: Integer ties. For instance, the mapping of tAacraft class gives

seven tables, one to represent the atomic attributes of the
Aircraft, and six tables representing every object connected
with the Aircraft: Direction, Location Altitude, SpeedPath
andLane Each table containsfareign keyreferring to the
primary keyof the Aircraft. The selection of all informa-
tion of anAircraft needs six join operations. This decreases
significantly the performance of the system.

For these reasons, we see that the mapping of real-time
class to the object-relational model is more suitable than

A real-time database may be viewed as an augmentedhe relational model. In fact, the object-relational model
database system. It then has queries, schemas, transactiorallows the use of simple or complex structures. Each struc-
commit protocols, concurrency control support, and sterag ture is defined through an appropriate mechanism, called
management [20]. So, the design of a real-time databasdJser Defined Type (UDT). An object-relational table is

Figure 5. Definition of Periodic and Sporadic
stereotypes.

4.4. Real-Time Class Stereotype

thus defined by means of either complex or simple data.Query 2 Creation of aUDT for sensor attributes
The recordings of an object-relational table represent con| sq. create type Real Ti neSensor under Real Ti ne
cret objects, which have methods endowed witrCdmect 2 (MaxinunDat aError nunber)
Id entity (OID). 3

Moreover, object-relational technology is a relational
technology which is extended with new capabilities, such
as methods UDT, etc. It offers two advantages: firstly, 5.3. Mapping of methods
it is compatible with relational technology and provides
a better support for complex object. Secondly, object- when defining atUDT, we can specify all the methods
relational databases are becoming commonplace becausghich allow us to manipulate the real-time object charac-
many commerciaDatsBaseM anagemerftystems DBMS teritics. The methods can be programmed ugimgtions
add object-oriented capabilities to their functionasifisuch andproceduresof an UDT. Thentriggers, functions pro-
asOracle 11g IBM DB2 andPostgreSQLFor These rea- cedurespackagesconstraintsandprivilegesallow to exe-
sons, we base our work on the object-relational databaseute the encapsulation aspects which are not automatically

design. _ _ _ _ taken into account, as thasibility rulesof an attribute or a

To map real-time classes into the object-relational method. These aspects can be handled by object-relational
model, we proceed in the following manner. views.
5.1. Mapping of derived attributes 5.4. Mapping of real-time classes

Derived attributes are mapped through the following ac-

tions: Action 1: Creation of an UDT, named

Action 1: .Creati(.)n of anU_ser Define_dType uDT), NOM.CTRTYPE which contains the following fields
namedRealTime which contains three fieldSV, TS and (cf. Query 3):

VD (cf. Query 1).
Action 2: For every attribute whose multiplicity is
greater than one, we proceed in the following manner:

Real-time class is mapped through the following actions:

Query 3 Creation of arlUDT for aircraft class

SQL create type Aircraft as object
(ldentifier varchar2(15),
Destination varchar2(15),
Di recti on Real Ti meSensor,
Locati on Real Ti neSensor,
Pat h Real Ti ne,

Lane Real Ti ne)

/

1. We create atJDT which represents a nested table,
namedNT_RealTime of RealTimetype, when the ex-
act value of the multiplicity is not mentioned.

2. We create atdDT which represents an array, named
ARRRealTime of RealTimetype, when the exact
value of the multiplicity is mentioned.

O~NO O WN

Query 1 Creation of arUDT for derived attributes

1. Classical attri f the real-time class.
SQL create type Real Time as obj ect Classical attributes of the real-time class

(Val ue nunber, 2. Sensor attributes of the real-time class, with the

\T/i lmeit ?WpD:J/al ;J.e ti ”Ersr,ga”p’ suitable types (types obtained from the mapping
alidityDuration number) of sensor attributesAN.TYPE NTAN.TYPE or

OO~ WN

not final: ARRAN.TYPB.
3. Derived attributes of the real-time class, with the ap-
propriate types (types obtained from the mapping of
5.2. Mapping of sensor attributes the derived attributes:AN.-TYPE NT_AN.TYPE or

ARRAN.TYPB.
Sensor attributes are mapped through the following ac-
tions: Action 2: Creation of an object-relational table, that has
Action 1: Creation of arlUDT, namedRealTimeSenspr the same name as the real-time class. Then, we add other
composed of four field€CV, TS VD andMDE (cf. Query constraintsigrimary key foreign keyetc.) (cf. Query 3).
2). Figure 7 illustrates the structure of aircraft real-time
Action 2: Is the same than action 2 for the derived at- class. It encapsulates classical attributes, and realgan-
tribute mapping (cf. section 5.1). sor and derived attributes.

Direction Location Path Lane

Aircraft-Id
Current | 1, Validity | Maximum | Current | . Validity | Maximum |Current | . Validity | Current | Validity
TimeStam, .
Value P Duration | Data Error | Value TimeStamp Duration | Data Error | Value TimeStamp Duration | Value TimeStamp Duration
Figure 7. Structure of an Aircraft real-time class.
I3 Fujaba Tool Suite
Edit Class Diagram Tools Options Window Help
OR & d Xb et DROP 5 v BMED
57{‘5 Projects L ATC [ATC]
1T ATC* {sem) -
Class Diagral | Fligh
| ightFlane ;
] Root Packag @ | : : S #RealTimeClass:
I% | (EpCaptain : String aircraft
| EpDepartureTime : Time 0.1 1 —
= | S@Ouration : Time e (Brp0estination ¢ Skring
| N 4 Corresponds g (Epbirection : Inkeger
| (Faldentifier : String =
| \ Cpi = (EparrivalTime @ Time (@Fpldentifier ; String
| (Ep5tate 1 String = 1
oA (@g0epartureTime : Time (#@Lane ; Integer
o o : (@phistance : Integer (ExpLocation : Integer &
Destination Departure (SpFlightLevel : String @Fath ¢ Inkeger . =
| 1 1 @pldentifier : Suing. = § ComputePath {) : Yoid
= Airpart - % Getlane () : Integer
= | T - & SetIdentifier (itString 3 ¢ Woid
| ggwj:nd:g;ltﬁ:g Integer ¥ Takes U‘ f'mmses & Updatealitude () : void [FER) -
=3 | (Felurnber OFTracks ; Inkeger i
(E@Pasition : String] ol
(BT akeaffTime ¢ Integer = {@dddress @ String - Meighbaring
— _ (Esphlarne ¢ String
™ Intersection EspTelephone @ Integer - 2.4
. 1 AirZone
&
Lane d oy (B#Capacity ¢ Inkeger
1 2t - @pldentifier : String - (Epldentifier 1 Shring
@@Flight!_n.avel : SFring FE (Enadmum ; Inkeger = W Baximalaltitude ; Integer
Q_?Identlfler i Struj.g. = @pinirumn : Inkeger | (Etinimaldltitude ; Inkeger
= ey ATC
< b -
| | 17 MByte of 21 MByte allocated
Figure 8. Air traffic control class diagram.
6. Implementation to indicate sensor attribute and @dlculator’ icon to in-

dicate derived attribute of Aircraft real-time class. Irdad

The implementation of our UML-RTDB components is tion, a “SPQ'icon is used to indicate sporadic methods and
done through an extension of an UML CASE T00|, named “PER icon to indicate periodiC methods. Figure 9 pl’esents
Fujaba From UML to JavaAnd BackAgain). The Fujaba Java code generated from the Aircraft real-time class. Fig-
environment aims to provide round-trip engineering suppor ure 10 presents SQL queries also generated from the Air-
for UML and Java. The main distinction to other UML tools ~ craft real-time class.
is its tight integration of UML class and UML behaviour di-
agrams to a visual programming language. This integration7. Conclusion and future work
enables Fujaba to perform a lot of static analysis work, fa-
cilitating the creation of a consistent overall specifioati Many real-time applications need a database environ-
In addition, it turns these UML diagrams into a powerful ment. But classical databases can not satisfy all require-
visual programming language and allows covering the gen-ments of these applications. We have studied, in this pa-
eration of complete application code. Since Fujaba is openper, the temporal requirements of real-time databases, for
source, it will be possible to add to it the appropriate tools data and operations. We have proposed, to specify dynamic
and make it able to accept real-time database specificationsemantics and complex data structure of these databases,
Figure 8 shows the class diagram under Fujaba of our aira set of appropriate concepts and tools, giving a real-time
traffic control application. We have chosen\&dtch icon object-oriented data model. This model incorporates new

mpEDIT - Fujaba
File Edit Options ‘Window Help

public class Aircraft R
{ priwvate String Destination;
private RealTime3ensory Direction:
private 3tring Identifier;
private RealTime Lane:
private RealTimeZensory Location;
private RealTime Path:
private String getDestination()
{ return thisz.Destination: }
private void setDestination(3tring walue)
{ thiz.Destination = walue; }
private int getDirection()
{ return this.Direction.getValue(); }
private woid setDirection(int walue)
{ this.Direction.setValue(value): }
private String getIdentifier()
{ return this.Identifier; }
private woid setIdentifier (String walue)
{ this.Identifier = walue; }
private int getlLane()
{ return this,Lane.getValue(); }
private woid setlane(int walue)
{ this.Lane.setValue(wvalue);}
private int getLocation()
{ return this,Location.getValue(); }
private woid setlocation(int walue)
{ this.Location.setValue (walue);}
private int getPathi)
{ return this.Path.getValue(); }
private woid setPathiint walue)
{ thiz.Path.setValue (value);}
public woid ComputePathi)
{this. Path. setWalue (this.Direction. getValue () *this. Location. getValue ()]}
public woid Updatedltitude (int walue)
{this.Altitude. setValue (wvalue) ;}

Figure 9. Java code generation from Aircraft real-time clas S.

File Edit Options “Window Help

create type RealTime as ohject ~
(Value number,

TimeStampvalue timestamp,

validityDuration number)

not final;

i

create type RealTimeSensor under RealTime
(MaximumDataError number)
i

create type Aircraft as object
(ldentifier varchar2{18),
Destination varchar2(13),
Direction RealTimeSensor,
Location FealTimeSensar,
Path RealTime,

Lane RealTime)

i

create table AircraftT able of Aircraft
[constraint pk_AircraftT able primary Key(ldentifier));

Insert into AircraftT able values ('AIRD01! 'Paris', RealTimeSensor(2 sysdate 3,5),
RealTimeSensorid sysdate,2,51,RealTime(2 sysdate,3) RealTime(4,sysdate, 37);

£ >

Figure 10. Generation of SQL queries from an Aircraft real-t ~ ime class.

types of data (sensor attributes and derived attribuies); t
constrained data, time-constrained methods (periodibmet

ods, sporadic methods and aperiodic methods), and a con-

currency control protocol (local controller). The framewo

we have designed and implemented to support this model

helps designers to produce real-time applications, witi te

poral semantics of data and transactions. It is composed

of an UML profile for real-time databases, nhamed UML-

RTDB, a translator to a object-relational model, and an

UML CASE Tool. UML-RTDB, based on UML2.2.1 Pro-

files package, contains a set of stereotypes expressing sen-

sor attributes, derived attributes, periodic methodsrasgtio

methods and real-time class. So, it allows to design class di
agrams for real-time databases. The translator is based on
a set of mapping rules from a real-time class diagram to a
object-relational model, which allows the use of simple or

complex structures. Finally, the UML CASE Tool is a sup-

port for the development of real-time databases. It is built
as an extension of Fujaba, an open source standard UML

CASE Tool.
In our future work, we will extend UML-RTDB with

other stereotypes in order to express time-constrained ass [13]

ciations and time-constrained multiplicities. Among them
we will study how to specify real-time constraints on the

proposed stereotypes, using Object Constraint Language[15]

(OCL) [14]. Moreover, we will add tools to Fujaba in order
to support dynamic and behavioural model.

References

(1]

M. Amirijoo, J. Hansson, and S. H. Son. Specification

and management of QoS in real-time databases support-[18]

ing imprecise computations.IEEE Transactions on
Computers, 55(3):304-319, 2006.

[2] A. Bestavros, K.-J. Lin, and S.SonReal-Time Database

[3] S. Demathieu, F. Thomas, C. André, S. Gérard, and [21]

(4]

(5]

(6]

(7]

System: Issues and Applicatigiebapter Advances in Real-

Time DataBase Systems Research, pages 1-14. Kluwer[20]

Academic Publishers, 1997.

F. Terrier. First experiments using the UML profile for
MARTE. In Proceedings ol1*" IEEE International Sym-
posium on Object-oriented Real-time distributed Compgutin
(ISORC’2008) pages 50-57, Orlando, United State, May 5-
7, 2008. IEEE Computer Society.

L. C. DiPippo and L. Ma. A UML package for specify-
ing real-time objects.Computer Standards and Interfaces
22(5):307-321, 2000.

B. Douglass.Real Time UML, Third Edition : Advances in
The UML for Real-Time System&earson Education, Inc,
0-321-16076-2, 2004.

S. Gerard, C. Mraidha, F. Terrier, and B. Baudry. An UML-
based concept for high concurrency : the real-time object. |
ISORC, 0-7695-2124-)pages 64-67, 2004.

N. Idoudi, C. Duvallet, R. Bouaziz, B. Sadeg, and F. Gar-
gouri. Structural model of real-time databases.Pmc. of

the 10" Intl. Conference on Enterprise Information Systems
- Databases and Informations Systems topic (ICEIS'08)
volume 1, pages 171-178, Barcelona - Spain, 2008.

N. Idoudi, C. Duvallet, R. Bouaziz, B. Sadeg, and F. Gar-
gouri. Structural model of real-time databases: an ilasstr
tion. In Proceedings of thé1!* IEEE International Sym-
posium on Object-oriented Real-time distributed Compautin
(ISORC’2008) pages 58-65, Orlando, United State, May 5-
7, 2008. IEEE Computer Society.

ITU-T. Recommendation Z.109 : languages for telecommu-
nications applications - SDL combined with UML. Interna-
tional Telecommunication Union, November 1999.

A. Lanusse, S. Gérard, and F. Terrier. Real-time madel
with UML: The ACCORD approach. In J. Bézivin and P.-A.
Muller, editors, The Unified Modeling Language, UML'98

- Beyond the Notation. First International Workshop, Mul-
house, France, June 1998, Selected Paperskime 1618 of
LNCS pages 319-335. Springer, 1999.

C. Lu, J. Stankovich, G. Tao, and S. Son. Feedback Con-
trol Real-Time Scheduling: Framework, Modeling and Al-
gorithms.Real-Time System23(1/2):85-126, 2002.

OMG. "A UML Profile for MARTE, Beta 1, OMG Adopted
Specification”, ptc/2007-08-04, August 2007.

OMG. "UML Profile for Schedulability, Performance and
Time, v1.1", formal/2005-01-02, January 2005.

OMG. "Object Constraint Language (OCL), v2.0",
formal/06-05-01, May 2006.

OMG. "Unified Modeling Language (UML), Infrastructyre
v2.1.2", formal/2007-11-04, November 2007.

K. Ramamritham. Real-Time Database¥urnal of Dis-
tributed and Parallel Databased(2):199-226, 1993.

K. Ramamritham and C. Pu. A Formal Characterization
of Epsilon Serialisability. IEEE Transaction Journal on
Knowledge and Data Engineering(6):997-1007, Decem-
ber 1995.

K. Ramamritham, S. Son, and L. DiPippo. Real-Time
Databases and Data Servicd®eal-Time System28:179—
215, 2004.

B. Selic. Using the object paradigm for distributedl+ixae
systems. INSORC pages 478-480, 1998.

J. Stankovic, S. Son, and J. Hansson. Misconceptioostab
real-time databasetEEE Computer32(6):29-36, 1999.

V. F. Wolfe, J. J. Prichard, L. C. Dipippo, and J. Bla&eal-
Time Database System: Issues and Applicatiaiapter
The RTSORAC Real-Time-Object-Oriented DataBase Pro-
totype, pages 279-301. Kluwer Academic Publishers, 1997.

