
How to model a real-time database?∗

Nizar Idoudi, Claude Duvallet and Bruno Sadeg
UFR des Sciences et Techniques

25 rue Philippe Lebon, BP 540, 76 058 Le Havre Cedex, FRANCE
{nizar.idoudi, claude.duvallet, bruno.sadeg}@univ-lehavre.fr

Nada Louati, Rafik Bouaziz and Faiez Gargouri
MIRACL-ISIMS, BP 1030, 3018 Sfax, TUNISIE
{Raf.Bouaziz, Faiez.Gargouri}@fsegs.rnu.tn

Abstract

Real-time databases deal with time-constrained data and
time-constrained transactions. The design of this kind of
databases requires the introduction of new concepts to sup-
port both data structures and the dynamic behaviour of the
database. In this paper, we give an overview about differ-
ent aspects of real-time databases and we clarify require-
ments of their modeling. Then, we present a framework
for real-time database design and describe its fundamen-
tal operations. A case study demonstrates the validity of the
structural model and illustrates SQL queries and Java code
generated from the classes of the model.

1. Introduction

Real-time databases have to deal with time-constrained
data and time-constrained transactions. They are now being
used for several applications such as space project control,
process control, financial market and air traffic control sys-
tems. In each of these time-critical applications, data about
the target environment must be continuously collected from
the real-world and processed in a timely manner to gener-
ate real-time responses. A real-time database has two dis-
tinguishing features: the notion of temporal consistent data,
and the ability to place real-time constraints on transactions.
Some of its data must not only be logically consistent, but
also temporally consistent, i.e., they must closely reflectthe
current state of the controlled environment. However, data
are collected at discreet moments. Hence they often rep-
resent an approximation of the reality. As time advances
continually, a real-time data value becomes less and less ac-
curate, until the moment where it does not reflect any more

∗This work is supported by the Haute-Normandy regionCPER project
“Logistic Transport Network and Information Technics”.

the state of the environment. At this time point, we say that
this data value is temporally inconsistent. Temporal consis-
tency can be measured in two ways:absolute consistency
andrelative consistency[16]. A data item is considered ab-
solutely consistent if and only if its age is within a specified
time interval. It should be often updated. The age repre-
sents the time duration between its timestamp and the cur-
rent time. For example, the speed age value must not exceed
five seconds; it verifies its absolute consistency constraint as
long as it is no more than five seconds old. Relative consis-
tency concerns data derived from other ones. For example,
the lane of an aircraft is derived from the location and the
altitude data items. Its temporal consistency depends of lo-
cation and altitude data consistency. So, real-time data are
subdivided into two types:sensor dataand derived data
[18]. Sensor data are data issued from sensors. Derived
data are data computed using sensor data (e.g., lane data).

Transactions in a real-time database environment are
also subdivided into two classes:update transactionsand
user transactions[16]. Update transactions are used to up-
date the values of real-time data in order to reflect the state
of the real world. They are executed periodically to up-
date sensor data, or sporadically to update derived data [8].
User transactions, representing user requests, arrive aperi-
odically. They may read or write non real-time data, but
only read real-time data.

Real-time databases are therefore specific. Their design
need appropriate concepts and tools which are not available
under systemic or object oriented methods. UML, the most
used modeling language nowadays, can not, in its standard
form, satisfy the requirements of such design. Indeed, it
is a general language used to model object-oriented appli-
cations across a wide range of domains. Nevertheless, its
extension mechanism, based on the concepts of profile and
stereotype, allows it, if enhanced, to support new concepts
and tools, and to become suitable for a particular domain



needing specific software engineering activities. Recently,
an UML profile for Modelling and Analysis of Real-Time
and Embedded systems (MARTE) has been standardized
by the OMG [12] [3]. However, the design of real-time
databases differs from the design of conventional real-time
systems. The designers of real-time databases must con-
sider both temporal aspects of data and timing constraints
of transactions [20] [8]. The design of this kind of databases
is thus performance-and semantic-dependent. It must con-
sider factors such as sensor data, derived data and Quality
of Data (QoD) management, temporal semantics in transac-
tion scheduling algorithms, concurrency control protocols,
disk caching, and buffer management protocols to meet the
timing constraints defined by real-time applications. Then,
which concepts and tools are suitable to define the design
of real-time databases? How to define and to implement an
UML profile supporting these requirements? How to imple-
ment a real-time database model under a technical environ-
ment? This paper deals with these issues and aims to bring
contributions in real-time databases design.

The paper is structured as follows. Section 2 briefly cov-
ers related works. Section 3 describes our real-time object-
oriented data model. Section 4 presents a set of stereotypes
that allows our UML-RTDB profile to express real-time
database features in a structural model. Section 5 quotes
different mapping rules of an UML-RTDB diagram to an
object relationship schema. Finally, the last section draws
some conclusions.

2. Related work

As the need for using real-time database grows, there
is a need to define an UML profile supporting real-time
database requirements. Several UML approaches were al-
ready proposed to take into account the real-time system
requirements, such asUML-RT [19], RT-UML [5], UML-
SDL [9] and ACCORD/UML[10]. For example, the basic
concepts ofRT-UMLwere integrated in the standard UML
through the UML profile for Schedulability, Performance,
and Time (denoted SPT profile) [13], which is recently re-
placed by the UML profile for Modeling and Analysis of
Real-Time and Embedded Systems (MARTE) [12]. How-
ever, UML constructs used by these approaches do not sup-
port real-time database requirements. A real-time database
is a database in which both the data and the operations upon
the data may have timing constraints [16]. In fact, real-time
databases have all requirements of traditional databases,
such as the management of accesses to structured, shared
and consistent data, but they also require management of
time-constrained data and time-constrained transactions[2].

To the best of our knowledge, there is only one UML-
based proposal for real-time databases modeling [4]. In
their work, the authors have defined an UML package

for specifying RTSORAC1 [21] object, calledRT-Object.
However, the RT-Object package is based on the Extension
Mechanisms package of UML1.3 which is a past standard.
Furthermore, imprecise computation encapsulated within
the RTSORAC object is defined in the context ofEpsilon
Serializabilityon transactions [17], and does not support the
notion ofQoD introduced in [1]. TheQoDconcept allows a
robust and controlled behavior of real-time databases during
transient overloads, based onFeedback Control Real-Time
Scheduling[11].

The framework proposed in this paper supplies, like RT-
Object, concepts and tools for real-time database model-
ing. But, unlike RT-Object, UML-RTDB, the profile of
this framework, supports the QoD concept that we define
for real-time attributes [8], on one hand, and it contains
a set of stereotypes to express dynamic semantics of real-
time attributes and real-time object features, on the other
hand. These stereotypes are defined under UML.2.1.2 Pro-
files package [15]. In addition, UML-RTDB allows to spec-
ify two kinds of real-time attributes,sensorattributes and
derivedattributes, in order to satisfy the current real-time
applications requirements.

3. Real-time object-oriented data model

Real−time
methods

Real−time
attributes

Local Controller 

M
ethod1 ()

M
ethod3 ()

M
ethod2 ()

Real−time object
Mailbox

Method3 ()

Method1 ()

Method2 ()

External
interface

Messages

Figure 1. Aircraft object.

Our work is based on a particular object model, named
real-time object-oriented data model, on which we incor-
porate time-constrained data and time-constrained transac-
tions of real-time databases [8]. Thus, a real-time database
is a collection of real-time objects (RTO) which are used
to manage time-critical dynamic systems in the real world.
Real-time objects are the real-time object-oriented database
entities. They represent dynamic entities of time-critical
dynamic applications in the real world [7]. We define a
real-time object as an extension of the real-time object, as
used in the ACCORD/UML approach [6]. It encapsulates

1RTSORAC: Real-Time Semantic Objects Relationships And Con-
straints



time-constrained data, time-constrained methods and con-
currency control mechanisms. As shown in figure 1, each
real-time object is made of four components: (i) a set of
real-time attributes, (ii) a set of real-time methods, (iii) a
mailbox, and (iv) a local controller [7] [8].

4. The UML-RTDB profile

In this section, we present an UML profile, enti-
tled UML-RTDB, which is a specialized variant of the
UML2.1.2 for real-time database applications. The main
aim of our proposal is to supply to the designers of real-time
databases UML extensions to support real-time database re-
quirements. This UML extension is specified in the UML
metamodel by a stereotype. The stereotype define how an
existing metaclass may be extended, and enables the use
of platform or domain specific terminology or notation, in
addition to the ones used for the extended metaclass [15].
In our work, UML-RTDB stereotypes extend metamodel
classes with specific sensor and derived attributes, specific
periodic and sporadic operations and a specific real-time
class that allow the design of class diagrams for real-time
databases. We base our proposal on theExtension relation-
shipproposed in UML2.1.2Profilespackage [15].

4.1. Real-time data type

As defined in [8], each real-time attribute value is char-
acterized by a timestamp, which indicates the time at which
it was last updated. So, for each real-time attribute value
corresponds a timestamp, which distinguishes it from other
attribute’s values. Thereby, as illustrated in figure 2 for the
attributeSpeed, the values of theVD andMDE fields are the
same for all real-time attributes. But, the values of theTS
field change for each real-time attribute.

CV
(TimeStamp)

TS

Speed

VD MDE
(Validity Duration) (Maximum Data Error)

900

920

925

2

(Current Value)

10:25:2

10:25:8

10:25:14

2 s

2 s

2 s

6 s

6 s

6 s

Figure 2. Illustration of the dynamic semantic
of a real-time attribute.

For this reason, we define three new UML data types,
called RTInteger, RTRealand RTString, that describe the
type of real-time attribute values. As shown in figure 3,
these metaclasses are characterized by two properties:

• Value: it indicates the attribute value written by the
related update method. It is of the typeInteger, Realor
String in the case of the metaclassRTInteger, RTReal
or RTString, respectively.

• Timestamp: it indicates the last time at which the at-
tribute’s value was updated.

<<profile>>UML−RTDB

Timestamp: Time

Value: Real

<<dataType>>
RTReal

Value: Integer

Timestamp: Time

<<dataType>>
RTInteger

Timestamp: Time

Value: String

<<dataType>>
RTString

Figure 3. Data types of UML-RTDB profile.

4.2. Sensor and Derived stereotypes

A real-time attribute may be eithersensoror derived[8].
To the best of our knowledge, there is no work which char-
acterizes derived data by aMaximum Data Error(MDE).
However, since derived data are the data calculated from
sensor data which have already some deviation from their
values in the real world (MDE), then derived data have auto-
matically some deviation from their values in the real world
(MDE). For example, a data read from a sensor has an MDE
of 1m. If a derived attribute is based on the formula 2 * the
sensor data, it would then have an MDE of 2m. For this rea-
son, in our work, we characterize derived data by an MDE.
In the general case derivation of the MDE value would not
be as simple, but it remains an interesting and innovative
perspective of research.

As shown in figure 4, we define two stereotypes,
≪Sensor≫ and≪Derived≫, to declare respectively sen-
sor attributes and derived attributes in the class diagrams.
Each of these stereotypes is characterized by two proper-
ties:

• Validity duration: it indicates the amount of time dur-
ing which the attribute value is considered valid. It is
of the typeInteger.

• Maximum data error: it indicates the maximum devi-
ation tolerated between the current attribute value and
the updated value. It is of the typeInteger.



<<metaclass>>
Property

<<metaclass>>
Property

<<profile>>UML−RTDB

<<stereotype>>

Validity Duration: Integer

Derived

Maximum Data Error: Integer

<<stereotype>>
Sensor

Validity Duration: Integer

Maximum Data Error: Integer

Figure 4. Definition of Sensor and Derived
stereotypes.

4.3. Periodic and Sporadic Stereotypes

We characterize the UML-RTDB profile by three stereo-
types,≪Periodic≫, ≪Sporadic≫ and≪Aperiodic≫, to
declare respectively periodic methods, sporadic methods
and aperiodic methods [8] in the class diagrams. As illus-
trated in figure 5, we define an abstract stereotype, named
≪Update≫, that generalizes these latter stereotypes. It is
characterized by aDeadline, which indicates the last time
by which the method execution must be completed. In ad-
dition, we characterize the≪Periodic≫ stereotype by aPe-
riod in order to define the periodicity of the methods.

<<metaclass>>
Operation

Period: Integer

<<stereotype>>
Periodic

<<stereotype>>
Sporadic

<<stereotype>>
Aperiodic

<<profile>>UML−RTDB

<<stereotype>>
Update

Deadline: Integer

Figure 5. Definition of Periodic and Sporadic
stereotypes.

4.4. Real-Time Class Stereotype

A real-time database may be viewed as an augmented
database system. It then has queries, schemas, transactions,
commit protocols, concurrency control support, and storage
management [20]. So, the design of a real-time database

has to take into account the management of all these compo-
nents. That’s why we define a≪RealTimeClass≫ stereo-
type (cf. Figure 8) in order to deal with the time-constrained
data, time-constrained operations, parallelism, and con-
currency property inherent to real-time databases. The
≪RealTimeClass≫ stereotype is added to classes in or-
der to specify that their instances will encapsulate real-time
data, real-time operations, and a local concurrency control
mechanism.

<<stereotype>>
RealTimeClass

<<metaclass>>
Class

<<profile>>UML−RTDB

Figure 6. Definition of RealTimeClass stereo-
type.

5. From an UML-RTDB diagram to an Object
Relationship schema

Many development tools are based on relational
databases [2]. Although the relational model is useful
for many applications, we believe that it is not as well-
suited as an object-oriented database model for applications
that require complex data management, have complex rela-
tionships between data, a suitable support for timing con-
straints, and more scheduling flexibility than serialisability
can provide. In the relational model, the mapping of an
UML-RTDB class generates a large number of tables. So,
queries need many joins to retrieve needed data, and their
execution becomes expensive (i.e. a large amount of time).
The main reason of this inadequacy is that relational model
can deal only with simple data. In other words, relational
model use a tabular representation of the real-word enti-
ties. For instance, the mapping of theAircraft class gives
seven tables, one to represent the atomic attributes of the
Aircraft, and six tables representing every object connected
with theAircraft: Direction, Location, Altitude, Speed, Path
andLane. Each table contains aforeign keyreferring to the
primary keyof the Aircraft. The selection of all informa-
tion of anAircraft needs six join operations. This decreases
significantly the performance of the system.

For these reasons, we see that the mapping of real-time
class to the object-relational model is more suitable than
the relational model. In fact, the object-relational model
allows the use of simple or complex structures. Each struc-
ture is defined through an appropriate mechanism, called
User Defined Type (UDT). An object-relational table is



thus defined by means of either complex or simple data.
The recordings of an object-relational table represent con-
cret objects, which have methods endowed with anObject
Identity (OID).

Moreover, object-relational technology is a relational
technology which is extended with new capabilities, such
as methods, UDT, etc. It offers two advantages: firstly,
it is compatible with relational technology and provides
a better support for complex object. Secondly, object-
relational databases are becoming commonplace because
many commercialDataBaseManagementSystems (DBMS)
add object-oriented capabilities to their functionalities, such
asOracle 11g, IBM DB2 andPostgreSQL. For These rea-
sons, we base our work on the object-relational database
design.

To map real-time classes into the object-relational
model, we proceed in the following manner.

5.1. Mapping of derived attributes

Derived attributes are mapped through the following ac-
tions:

Action 1: Creation of anUser DefinedType (UDT),
namedRealTime, which contains three fieldsCV, TS and
VD (cf. Query 1).

Action 2: For every attribute whose multiplicity is
greater than one, we proceed in the following manner:

1. We create anUDT which represents a nested table,
namedNT RealTime, of RealTimetype, when the ex-
act value of the multiplicity is not mentioned.

2. We create anUDT which represents an array, named
ARRRealTime, of RealTime type, when the exact
value of the multiplicity is mentioned.

Query 1 Creation of anUDT for derived attributes

SQL create type RealTime as object
2 (Value number,
3 TimeStampValue timestamp,
4 ValidityDuration number)
5 not final;
6 /

5.2. Mapping of sensor attributes

Sensor attributes are mapped through the following ac-
tions:

Action 1: Creation of anUDT, namedRealTimeSensor,
composed of four fields:CV, TS, VD andMDE (cf. Query
2).

Action 2: Is the same than action 2 for the derived at-
tribute mapping (cf. section 5.1).

Query 2 Creation of anUDT for sensor attributes

SQL create type RealTimeSensor under RealTime
2 (MaximumDataError number)
3 /

5.3. Mapping of methods

When defining anUDT, we can specify all the methods
which allow us to manipulate the real-time object charac-
teritics. The methods can be programmed usingfunctions
andproceduresof an UDT. Thentriggers, functions, pro-
cedures, packages, constraintsandprivilegesallow to exe-
cute the encapsulation aspects which are not automatically
taken into account, as thevisibility rulesof an attribute or a
method. These aspects can be handled by object-relational
views.

5.4. Mapping of real-time classes

Real-time class is mapped through the following actions:
Action 1: Creation of an UDT, named

NOM CTR TYPE, which contains the following fields
(cf. Query 3):

Query 3 Creation of anUDT for aircraft class

SQL create type Aircraft as object
2 (Identifier varchar2(15),
3 Destination varchar2(15),
4 Direction RealTimeSensor,
5 Location RealTimeSensor,
6 Path RealTime,
7 Lane RealTime)
8 /

1. Classical attributes of the real-time class.

2. Sensor attributes of the real-time class, with the
suitable types (types obtained from the mapping
of sensor attributes:AN TYPE, NT AN TYPE or
ARRAN TYPE).

3. Derived attributes of the real-time class, with the ap-
propriate types (types obtained from the mapping of
the derived attributes:AN TYPE, NT AN TYPE or
ARRAN TYPE).

Action 2: Creation of an object-relational table, that has
the same name as the real-time class. Then, we add other
constraints (primary key, foreign key, etc.) (cf. Query 3).

Figure 7 illustrates the structure of anAircraft real-time
class. It encapsulates classical attributes, and real-time sen-
sor and derived attributes.



Validity
Duration

Current
Value

Validity
Duration

Maximum
Data Error

Maximum
Data Error

Current
Value

Validity
Duration

Current
Value

Current
Value

Validity
Duration

Aircraft−Id
TimeStampTimeStamp

LocationDirection

TimeStamp

Path Lane

TimeStamp

Figure 7. Structure of an Aircraft real-time class.

Figure 8. Air traffic control class diagram.

6. Implementation

The implementation of our UML-RTDB components is
done through an extension of an UML CASE Tool, named
Fujaba (FromUML to JavaAnd BackAgain). The Fujaba
environment aims to provide round-trip engineering support
for UML and Java. The main distinction to other UML tools
is its tight integration of UML class and UML behaviour di-
agrams to a visual programming language. This integration
enables Fujaba to perform a lot of static analysis work, fa-
cilitating the creation of a consistent overall specification.
In addition, it turns these UML diagrams into a powerful
visual programming language and allows covering the gen-
eration of complete application code. Since Fujaba is open
source, it will be possible to add to it the appropriate tools
and make it able to accept real-time database specification.
Figure 8 shows the class diagram under Fujaba of our air
traffic control application. We have chosen a “Watch” icon

to indicate sensor attribute and a “Calculator” icon to in-
dicate derived attribute of Aircraft real-time class. In addi-
tion, a “SPO” icon is used to indicate sporadic methods and
“PER” icon to indicate periodic methods. Figure 9 presents
Java code generated from the Aircraft real-time class. Fig-
ure 10 presents SQL queries also generated from the Air-
craft real-time class.

7. Conclusion and future work

Many real-time applications need a database environ-
ment. But classical databases can not satisfy all require-
ments of these applications. We have studied, in this pa-
per, the temporal requirements of real-time databases, for
data and operations. We have proposed, to specify dynamic
semantics and complex data structure of these databases,
a set of appropriate concepts and tools, giving a real-time
object-oriented data model. This model incorporates new



Figure 9. Java code generation from Aircraft real-time clas s.

Figure 10. Generation of SQL queries from an Aircraft real-t ime class.



types of data (sensor attributes and derived attributes), time-
constrained data, time-constrained methods (periodic meth-
ods, sporadic methods and aperiodic methods), and a con-
currency control protocol (local controller). The framework
we have designed and implemented to support this model
helps designers to produce real-time applications, with tem-
poral semantics of data and transactions. It is composed
of an UML profile for real-time databases, named UML-
RTDB, a translator to a object-relational model, and an
UML CASE Tool. UML-RTDB, based on UML2.2.1 Pro-
files package, contains a set of stereotypes expressing sen-
sor attributes, derived attributes, periodic methods, sporadic
methods and real-time class. So, it allows to design class di-
agrams for real-time databases. The translator is based on
a set of mapping rules from a real-time class diagram to a
object-relational model, which allows the use of simple or
complex structures. Finally, the UML CASE Tool is a sup-
port for the development of real-time databases. It is built
as an extension of Fujaba, an open source standard UML
CASE Tool.

In our future work, we will extend UML-RTDB with
other stereotypes in order to express time-constrained asso-
ciations and time-constrained multiplicities. Among them,
we will study how to specify real-time constraints on the
proposed stereotypes, using Object Constraint Language
(OCL) [14]. Moreover, we will add tools to Fujaba in order
to support dynamic and behavioural model.

References

[1] M. Amirijoo, J. Hansson, and S. H. Son. Specification
and management of QoS in real-time databases support-
ing imprecise computations.IEEE Transactions on
Computers, 55(3):304–319, 2006.

[2] A. Bestavros, K.-J. Lin, and S.Son.Real-Time Database
System: Issues and Applications, chapter Advances in Real-
Time DataBase Systems Research, pages 1–14. Kluwer
Academic Publishers, 1997.

[3] S. Demathieu, F. Thomas, C. André, S. Gérard, and
F. Terrier. First experiments using the UML profile for
MARTE. In Proceedings of11th IEEE International Sym-
posium on Object-oriented Real-time distributed Computing
(ISORC’2008), pages 50–57, Orlando, United State, May 5-
7, 2008. IEEE Computer Society.

[4] L. C. DiPippo and L. Ma. A UML package for specify-
ing real-time objects.Computer Standards and Interfaces,
22(5):307–321, 2000.

[5] B. Douglass.Real Time UML, Third Edition : Advances in
The UML for Real-Time Systems. Pearson Education, Inc,
0-321-16076-2, 2004.

[6] S. Gerard, C. Mraidha, F. Terrier, and B. Baudry. An UML-
based concept for high concurrency : the real-time object. In
ISORC, 0-7695-2124-X, pages 64–67, 2004.

[7] N. Idoudi, C. Duvallet, R. Bouaziz, B. Sadeg, and F. Gar-
gouri. Structural model of real-time databases. InProc. of

the 10th Intl. Conference on Enterprise Information Systems
- Databases and Informations Systems topic (ICEIS’08),
volume 1, pages 171–178, Barcelona - Spain, 2008.

[8] N. Idoudi, C. Duvallet, R. Bouaziz, B. Sadeg, and F. Gar-
gouri. Structural model of real-time databases: an illustra-
tion. In Proceedings of the11th IEEE International Sym-
posium on Object-oriented Real-time distributed Computing
(ISORC’2008), pages 58–65, Orlando, United State, May 5-
7, 2008. IEEE Computer Society.

[9] ITU-T. Recommendation Z.109 : languages for telecommu-
nications applications - SDL combined with UML. Interna-
tional Telecommunication Union, November 1999.

[10] A. Lanusse, S. Gérard, and F. Terrier. Real-time modeling
with UML: The ACCORD approach. In J. Bézivin and P.-A.
Muller, editors,The Unified Modeling Language, UML’98
- Beyond the Notation. First International Workshop, Mul-
house, France, June 1998, Selected Papers, volume 1618 of
LNCS, pages 319–335. Springer, 1999.

[11] C. Lu, J. Stankovich, G. Tao, and S. Son. Feedback Con-
trol Real-Time Scheduling: Framework, Modeling and Al-
gorithms.Real-Time Systems, 23(1/2):85–126, 2002.

[12] OMG. ”A UML Profile for MARTE, Beta 1, OMG Adopted
Specification”, ptc/2007-08-04, August 2007.

[13] OMG. ”UML Profile for Schedulability, Performance and
Time, v1.1”, formal/2005-01-02, January 2005.

[14] OMG. ”Object Constraint Language (OCL), v2.0”,
formal/06-05-01, May 2006.

[15] OMG. ”Unified Modeling Language (UML), Infrastructure,
v2.1.2”, formal/2007-11-04, November 2007.

[16] K. Ramamritham. Real-Time Databases.Journal of Dis-
tributed and Parallel Databases, 1(2):199–226, 1993.

[17] K. Ramamritham and C. Pu. A Formal Characterization
of Epsilon Serialisability. IEEE Transaction Journal on
Knowledge and Data Engineering, 7(6):997–1007, Decem-
ber 1995.

[18] K. Ramamritham, S. Son, and L. DiPippo. Real-Time
Databases and Data Services.Real-Time Systems, 28:179–
215, 2004.

[19] B. Selic. Using the object paradigm for distributed real-time
systems. InISORC, pages 478–480, 1998.

[20] J. Stankovic, S. Son, and J. Hansson. Misconceptions about
real-time databases.IEEE Computer, 32(6):29–36, 1999.

[21] V. F. Wolfe, J. J. Prichard, L. C. Dipippo, and J. Black.Real-
Time Database System: Issues and Applications, chapter
The RTSORAC Real-Time-Object-Oriented DataBase Pro-
totype, pages 279–301. Kluwer Academic Publishers, 1997.


