
STRUCTURAL MODEL OF REAL-TIME DATABASES∗

Nizar Idoudi, Claude Duvallet and Bruno Sadeg
LITIS, UFR des Sciences et Techniques, 25 rue Philippe Lebon BP 540, 76 058, Le Havre Cedex, FRANCE

{Nizar.Idoudi, Claude.Duvallet, Bruno.Sadeg}@univ-lehavre.fr

Rafik Bouaziz, Faiez Gargouri
MIRACL-ISIMS, BP 1030, 3018, Sfax, Tunisie
{Raf.Bouaziz, Faiez.Gargouri}@fsegs.rnu.tn

Keywords: RTDB, Real-Time Objects, Sensor Attributes, Derived Attributes, Evolutionary Stereotype, UML profile.

Abstract: A real-time database is a database in which both the data and the operations upon the data may have timing
constraints. Our objective in this paper is to model easily real-time database structures using the Model-Driven
Engineering paradigm, specially the UML2 language. For that purpose, we propose an UML2.0 profile,
entitled UML-RTDB, which is based on UML2.O Profiles package, in order to cope with the specific need of
designing real-time databases.

1 INTRODUCTION

A real-time database is a database in which both
the data and the operations upon the data may have
timing constraints (Ramamritham, 1993). Real-time
database operations involve gathering data from the
environment, processing the gathered information in
the context of previously acquired information, and
providing timely responses. The operations also in-
volve processing not only archival data but also tem-
poral data which loses its validity after a certain time
duration. Timing constraints of data express how old
data can still be considered valid. In general, tempo-
ral consistency of data has two aspects: absolute and
relative. The absolute temporal consistency restricts
the age of a single data item, while relative tempo-
ral consistency restricts the relative ages of a groups
of data items with respect to each other (Ramam-
ritham, 1993). Both the time semantics of the data
and the response-time requirements imposed by the
environment define the transaction timing constraints
and may be expressed as either the periods or dead-
lines.

Two of the most widely-studied models for real-
time databases are the relational and the object-
oriented models. However, due to the nature of many

∗This work is supported by the Haute-Normandie region
CPER project “Logistic Transport Network and Informa-
tion Technics”.

real-time applications that must handle complex real-
world objects with short deadlines, many researchers
believe that the object-oriented model is more natural
and powerful than the relational model (Kim, 1995).
Several research projects on real-time databases have
adopted the object-oriented model for building their
prototype systems (Wolfe et al., 1997) (Stankovic
et al., 1997). Our work in this paper is based on
the object-oriented database model. Thus, a real-
time database is a collection of objects which are used
to model time-critical dynamic systems in the real
world. Each object has some internal state which is
protected by the object abstraction. The only way that
objects can be accessed by transactions is to invoke
the methods defined by objects.

UML is a general language for modeling object-
oriented applications across a wide range of domains.
Developing a truly adequate uniform modeling lan-
guage in the face of these diverse domains seems an
unsolvable quest and contrasts domain specific soft-
ware engineering activities. Recently, many adapta-
tions to the UML have been made to reflect a real-
time domain’s world. Thereby, several UML ap-
proaches were proposed to take into account the real-
time system requirements such as RT-UML (Dou-
glass, 2004), UML-SDL (ITU-T, 1999), and AC-
CORD/UML (Lanusse et al., 1999). In the UML
standard, The basic concepts which are integrated
are those of RT-UML, through the UML profile for

Schedulability, Performance, and Time (denoted SPT
profile) (OMG, 2005). However, UML constructs
used by these approaches do not support real-time
database requirements. Indeed, the design of real-
time database must consider both temporal aspects of
data and timing constraints of transactions (Stankovic
et al., 1999). To the best of our knowledge, there is
only one based UML proposal for real-time databases
modeling (DiPippo and Ma, 2000). In their work, the
authors have defined an UML package for specifying
RTSORAC object, called RT-Object. However, the
RT-Object package is based on the Extension Mecha-
nisms package of UML1.3 which is a past standard.

The organisation of this paper is as follows. Sec-
tion 2 describes our real-time object model. Section
3 details the UML-RTDB profile, which is a special-
ized variant of the UML2.0 in real-time database ap-
plications. This profile contains specialized versions
of the metamodel elements, i.e. Stereotypes, defined
in the UML2.0 metamodel that allow the design of
class diagrams for real-time databases. In section 4,
we conclude the paper and give some perspectives to
our work.

2 REAL-TIME OBJECT MODEL

A real-time database is by definition a database
system. It has queries, schemas, transactions, com-
mit protocols, concurrency control support, and stor-
age management (Stankovic et al., 1999). A real-
time database models an external environment that
changes continuously. It is designed to be kept in
shared main memory for fast and predictable access
(Ramamritham, 1993). The design of a real-time
database has to take into account the management of
all these components. That’s why, in our work, we
define a Real-time object in order to declare the time-
constrained data, the time-constrained operations, the
parallelism, and the concurrency property inherent to
real-time databases. Real-time objects are real-time
database entities. They represent dynamic entities of
time-critical dynamic systems in the real world. As
shown in the figure 1, each real-time object is made
of four components: (i) a set of real-time attributes,
(ii) a set of real-time methods, (iii) a mailbox, and
(iv) a local controller.

Because of the dynamic nature of the real world,
more than one transaction may send requests to the
same real-time object. Concurrent execution of these
transactions allows several methods to run concur-
rently within the same object. To handle this essential
property of real-time database systems, we associate
to each real-time object a local concurrency control

Real−time
methods

Real−time
attributes

Local Controller

M
ethod1 ()

M
ethod3 ()

M
ethod2 ()

Real−time object
Mailbox

Method3 ()

Method1 ()

Method2 ()

External
interface

Messages

Figure 1: Schema of the Real-time object.

mechanism, named local controller, that manages the
concurrent execution of its methods. Thus, the real-
time object receives messages in its mailbox awaking
its local controller that checks the timing constraint
attached to messages and selects one message follow-
ing a special scheduling algorithm. The local con-
troller verifies the concurrency constraints with the al-
ready running methods of the real-time object. Then,
it allocates a new thread to handle the message when
possible. When a method terminates its execution,
the corresponding thread is released and concurrency
constraints are relaxed. If the service is periodic, the
thread is not released and supports all periodic exe-
cution of the requested service. A real-time object
is an extension of active object as usually defined
in concurrent programming languages (Terrier et al.,
1997), that encapsulates time-constrained data, time-
constrained methods and concurrency control mecha-
nisms.

2.1 Sensor and Derived attributes

Real-time data is divided into two types: sensor data
and derived data (Ramamritham et al., 2004). Sensor
data are the data issued from sensors. Derived data
are the data calculated from sensor data. Our real-
time data model is based on the model introduced in
(Ramamritham, 1993) and we associate to this model
the notion of maximum data error (MDE) introduced
in (Amirijoo et al., 2006). Thus, a real-time data is
modeled by d = (dvalue, dtimestamp, davi, dmde), where
dvalue represents the real world data value, dtimestamp
is the time at which the attribute’s value was last up-
dated, davi is the absolute validity interval and dmde is
the maximum amount of imprecision associated with
the attribute’s value.

We characterize the real-time object by a real-time
attribute model, which is devided into two types of
attributes: sensor attributes and derived attributes.
Senor attributes are used to store a sensor data which
must be periodically updated in order to closely re-
flect the real world state of the application environ-

ment. Derived attributes are used to store a derived
data that has to be calculated from sensor attributes.

Name

Current Value
(CV)

TimeStamp
(TS)

Validity Duration
(VD)

Maximum Data Error
(MDE)

Figure 2: Structure of the Real-time attribute.

As shown in the figure 2, each real-time attribute
is characterized by <N, CV, TS, VD, MDE>. N is the
name of the attribute. The second field, CV, is used
to store the final attribute value captured by the last
update correspondent method. This field is used by
the system to determine logical integrity constraints
of the attribute value. The third field, TS, is used to
store the time at which the attribute’s value was last
updated (Ramamritham, 1993). Access to the times-
tamp of an attribute is necessary for determining tem-
poral consistency of the attribute. The next field, VD,
is used to store the absolute validity interval (denoted
by avi) of the attribute value (Ramamritham, 1993).
It represents the amount of time during which the at-
tribute value is considered valid. This element is nu-
meric and permits to determine, in association with
TS, the absolute consistency of the attribute (Ramam-
ritham, 1993). The last field, MDE, of a real-time
attribute is used to memorize the absolute maximum
data error tolerated on the attribute value (Amirijoo
et al., 2006). This field determines the upper bound
of deviation between the current data value and the
updated value.

3 AN UML-RTDB PROFILE

There is a need to define an UML profile support-
ing real-time database requirements. In this section,
we present an UML profile, entitled UML-RTDB,
which is based on UML2.0 Profiles package and pro-
vides various stereotypes for sensor attributes, de-
rived attributes and real-time objects.

3.1 Real-Time Attribute stereotype

The main goal of the UML-RTDB is to provide to
the designers of real-time databases an UML exten-
sion (stereotypes) that supports both sensor and de-
rived attributes features. A stereotype defines how
an existing metaclass may be extended, and enables
the use of platform or domain specific terminology
or notation, in addition to the ones used for the ex-
tended metaclass (OMG, 2007). However, the stan-
dard stereotype can not express features of sensor and

derived attributes because it does not allow the defi-
nition of structural and behavioral features (Debnath
et al., 2003). Besides, the fields timestamp, valid-
ity duration and maximum data error represent struc-
tural features and should be expressed as Attributes.
Each atribute is also characterized by an update oper-
ation that ensures its freshness and must be modeled
as an Operation. For this reason, we base our work
on the Evolutionary Stereotype extension mechanism
of UML (Debnath et al., 2003). This extension mech-
anism allows the definition of new stereotypes with
structural and behavioral characteristics.

Moreover, we base our proposal on the Extension
relationship proposed in UML2.0 Profiles package
(OMG, 2007). The extension is used to indicate that
the properties of a metaclass are extended through a
stereotype, and gives the ability to flexibly add (and
later remove) stereotypes to (resp. from) classes.
Thus, the Stereotype::baseClass attribute is replaced
by an extension relationship to the Class metaclass.
This former generalizes the Stereotype metaclass and
contains a name attribute. In addition, the Stereo-
type::icon attribute is replaced by the icon role linking
the Stereotype metaclass to Image metaclass.

Since the sensor attributes and derived attributes
have the same structural characteristics (Timestamp,
Validity Duration, Maximum Data Error) and behav-
ioral characteristics (Update operation), we propose
an abstract stereotype, called ¿RealTimeAttributeÀ,
in order to factorize these characteristics. So, in-
stead of defining the structural and behavioral features
for each stereotype aside, we define these features in
a general manner within the ¿RealTimeAttributeÀ
stereotype. This former is a realization of the Evolu-
tionary stereotype that allows the statement of struc-
tural and behavioral features. Thereby, as shown
in figure 3, the ¿RealTimeAttributeÀ stereotype
is characterized by three structural and one behav-
ioral characteristics. The first features are defined
by TimeStamp, Validity Duration, and Maximum
Data Error metaclasses, which specialize the Struc-
turalFeature metaclass of UML metamodel. The last
feature is defined by the Update metaclass, which spe-
cializes the BehavioralFeature metaclass.

The TimeStamp metaclass declares the timestamp
of the attribute. It is characterized by two proper-
ties: Type and Granularity, where Type indicates the
type of the Timestamp value, which is the Time type
expressed in UML metamodel. The Granularity de-
fines the granule of the Timestamp, which may be
“Minute”, “Second”, etc.

The Validity Duration metaclass defines the valid
time of the attribute value. It is characterized by two
properties: Type and Granularity. The Type indi-

Feature

Image

Class

name : string [0..1]

Stereotype

StructuralFeature

Extension relationship
0..1

icon

*

*

Real−Time Attribute

newFeature
*

Type: Time

TimeStamp Maximum Data Error

Type: String

Validity Duration

Type: Integer
Granularity: String Granularity: StringGranularity: String

BehavioralFeature

Update

Type: String

Figure 3: Abstract syntax of the ¿RealTimeAttributeÀ stereotype.

:Class

:Stereotype

:StructuralFeature

:Feature

:Update

:Feature

:Real−Time Attribute

:Class

:Timestamp :Validity Duration :Maximum Data Error

: Image

:BehavioralFeature

Name: "Attribute"

NewFeature

NewFeature

Type: Time Type: Integer

Granularity: "Second"

Type: Integer

Granularity: "Second"

Name: "Sensory"

Extension relationship

Granularity: "Second"

Type: "Periodic"

Figure 4: Abstract syntax of the ¿SensoryÀ stereotype.

cates the type of the Validity Duration value, which
is typed Integer. The Granularity defines the gran-
ule of the Validity Duration, which may be “Minute”,
“Second”, etc.

The Maximum Data Error metaclass defines the
amount of error tolerated on an attribute value. It
contains a Type property, which indicates the type of
Maximum Data Error value. It has the same type as
attribute value. A Granularity property defines the
granule of the Maximum Data Error, which may be
“Minute”, “Second”, etc.

The Update metaclass declares the operation
which updates the CurrentValue and TimeStamp
fields of the attribute. It contains a Type property that
indicates the type of the operation periodicity. In our
case, the operation periodicity depends on the type of
the attribute. It is “Periodic” for a sensor attribute,
and it is “Sporadic” for a derived attribute.

3.2 Sensory and Derived stereotypes

We define ¿SensoryÀ stereotype and ¿DerivedÀ
stereotype to declare respectively sensor attributes
and derived attributes, in the structural model.
Each stereotype presents a realization of the
¿RealTimeAttributeÀ stereotype according to the
appropriate values of its properties, and an extension
of the Attribute metaclass of UML metamodel.
Figure 4 shows the abstract syntax of ¿SensoryÀ
stereotype. Its structural features are declared by
the metaclasses: TimeStamp, Validity Duration, and
Maximum Data Error. In this work, we consider that
time granularity is the “Second”. The designers of
real-time databases can easily modify the values of
stereotype properties according to the requirements
of real-time applications. The only behavioral feature
of the ¿SensoryÀ stereotype is defined by the

Validity DurationMaximum Data Error

TimeStamp Update

<<Sensory>>

600

Type: Integer
Granularity: "Second"Granularity: "Second"

Type: Integer

Type: Integer

Granularity: "Second"

Type: Integer

<<instanceOf>>

<<instanceOf>>

Metamodel
(M2)

10:25:2

5 20

Speed: Integer
Model
(M1)

Instance model
(M0)

Figure 5: Instance Model of the ¿SensoryÀ stereotype.

Update metaclass. The ¿DerivedÀ stereotype has
the same abstract syntax as the ¿SensoryÀ stereo-
type. They have the same structural and behavioral
characteristics. Besides, they extend the same meta-
instance of the Class metaclass, i.e. “Attribute”,
through the Extension relationship. However, these
two stereotypes differ in their specific notations,
their meta-instances of the Class metaclass which
generalizes the Stereotype metaclass and specifies
the name of the stereotype, and their operations
periodicity. So, for the ¿SensoryÀ stereotype,
the meta-instance name of the Class metaclass is
“Sensory” (cf. figure 4). For the ¿DerivedÀ
stereotype, the meta-instance name is “Derived”.
Besides, as shown in the figure 6, we have chosen a
“watch” as an icon declaring a sensor attribute and a
“Calculator” declaring a derived attribute. The oper-
ation periodicity of a sensor attribute is “Periodic”
and it is “Sporadic” for a derived attribute.

Figure 5 shows an instance model of the sensor at-
tribute Speed, according to three layers: metamodel,
users model, and user objects (user data). It is charac-
terized as follows:

¿Name: Speed, CurrentValue: 600, TimeStamp:
10:25:2, ValidityDuration: 20, MaximumDataError:
5À.

3.3 Real-Time Object stereotype

A real-time database is a collection of real-time ob-
jects which are used to model a time-critical dy-
namic system in the real world. The design of a

Aircraft

Identifier

Destination

SetIdentifier ()

GetLane ()

Name

Lane

Direction

Location

Path

UpdateAltitude ()

ComputePath ()

Operations

Attributes
.
.

.

.

<<RealTimeObject>>

Figure 6: Aircraft real-time object class.

real-time database has to take into account the man-
agement of real-time object features. In our work,
we define a ¿RealTimeObjectÀ stereotype in or-
der to declare the time-constrained data, the time-
constrained operations, the parallelism, and the con-
currency property inherent to real-time objects. The
¿RealTimeObjectÀ stereotype is added to classes in
order to specify that their instances will encapsulate
real-time data, real-time operations, and a local con-
currency control mechanism.

As an example, we consider an air-traffic con-
trol system (Locke, 2001), in which each aircraft in

the airspace can be modeled as a real-time object.
The designers of the system can include the UML-
RTDB package when building their design in order
to cope with the specific need of designing real-time
databases. Figure 6 illustrates an Aircraft real-time
object class. It encapsulates classical and real-time
attributes (sensor and derived), and real-time opera-
tions.

4 CONCLUSION AND FUTURE
WORK

In this work, we have presented how to repre-
sent real-time related properties in the object-oriented
worlds, such as object-oriented databases and object-
oriented CASE tools, such as UML2.0. For this pur-
pose, we have proposed a real-time object model to
include real-time aspects within databases from the
viewpoint of object-oriented data model instead of
traditional relational data model. We have also pro-
posed an UML profile, called UML-RTDB, which is
based on UML2.0 Profiles package and which pro-
vides various stereotypes for sensor attributes, derived
attributes, and real-time objects.

In our future work, we will illustrate our pro-
posal on an air traffic control system, as proposed in
(Locke, 2001). We will also extend UML-RTDB with
other stereotypes in order to express time-constrained
operations, time-constrained associations, and time-
constrained multiplicities.

REFERENCES

Amirijoo, M., Hansson, J., and Son, S. H. (2006).
Specification and management of QoS in real-
time databases supporting imprecise compu-
tations. IEEE Transactions on Computers,
55(3):304–319.

Debnath, N., Riesco, D., Maccio, A., Montejano, G.,
and Martellotto, P. (2003). Definition of a new
kind of UML stereotype based on OMG meta-
model. In Proceedings of the ACS/IEEE Arab
International Conference on Computer Systems
and Applications: AICCSA’03, Tunis, Tunisia.

DiPippo, L. C. and Ma, L. (2000). A UML package
for specifying real-time objects. Computer Stan-
dards and Interfaces, 22(5):307–321.

Douglass, B. (2004). Real Time UML, Third Edi-
tion : Advances in The UML for Real-Time Sys-
tems. Pearson Education, Inc, 0-321-16076-2.

ITU-T (November 1999). Recommendation
Z.109: languages for telecommunications
applications - SDL combined with UML.
International Telecommunication Union.

Kim, W. (1995). Object-Oriented Database Sys-
tems: Promises, Reality, and Future. Modern
Database Systems, pages 255–280. Addison
Wesly.

Lanusse, A., Gérard, S., and Terrier, F. (1999). Real-
time modeling with UML: The ACCORD ap-
proach. In Bézivin, J. and Muller, P.-A., editors,
The Unified Modeling Language, UML’98 - Be-
yond the Notation. First International Workshop,
Mulhouse, France, June 1998, Selected Papers,
volume 1618 of LNCS, pages 319–335. Springer.

Locke, D. (2001). Applications and system charac-
teristics. In Real-Time Database Systems: Ar-
chitecture and Techniques, pages 17–26. Kluwer
Academic Publishers.

OMG (January 2005). ”UML Profile for Schedulabil-
ity, Performance and Time, v1.1”, formal/2005-
01-02.

OMG (November 2007). ”Unified Modeling
Language (UML), Infrastructure, v2.1.2”,
formal/2007-11-04.

Ramamritham, K. (1993). Real-Time Databases.
Journal of Distributed and Parallel Databases,
1(2):199–226.

Ramamritham, K., Son, S., and DiPippo, L. (2004).
Real-Time Databases and Data Services. Real-
Time Systems, 28:179–215.

Stankovic, J., Son, S., and Hansson, J. (1999). Mis-
conceptions about real-time databases. IEEE
Computer, 32(6):29–36.

Stankovic, J., Son, S., and Liebeherr, J. (1997). Bee-
Hive: Global Multimedia Database Support for
Dependable, Real-Time Applications. In Real-
Time Database and Information Systems, pages
409–422. Kluwer Academic Publishers.

Terrier, F., Lanusse, A., Bras, D., Roux, P., and
Vanuxeem, P. (1997). Concurrent object for mul-
titasking. In L’objet, volume 3, pages 179–196,
Paris, France.

Wolfe, V. F., Prichard, J. J., Dipippo, L. C., and
Black, J. (1997). Real-Time Database System:
Issues and Applications, chapter The RTSO-
RAC Real-Time-Object-Oriented DataBase Pro-
totype, pages 279–301. Kluwer Academic Pub-
lishers.

