
Multi-Versions Data for improvement of QoS in RTDBS∗

Emna Bouazizi, Claude Duvallet, Bruno Sadeg
LIH, Université du Havre, France.

{Emna.Bouazizi,Claude.Duvallet,Bruno.Sadeg}@univ-lehavre.fr

Abstract

In current research toward the design of more power-
ful behavior of RTDBS under unpredictable workloads, dif-
ferent research groups focus their work on QoS (Quality
of Service) guarantee. Their research are often based on
feedback control real-time scheduling theory. In this pa-
per, we propose a technique which allows to execute trans-
actions on time using fresh and precise data while taking
into account the global size of the database. We have ex-
tended the feedback-based miss ratio control by both using
multi-versions data, and proposing a data management pol-
icy combining (1) limitation of the versions number and (2)
dynamic adjustment of this limit according to a maximum
database size parameter.

1 Introduction

In previous years, a lot of work has been done on RTDBS
[8][9], which are systems that are designed to manage appli-
cations where it is desirable to execute transactions timely
using fresh and precise data [1]. Since the workload in this
systems is unpredictable, the system may become quickly
overloaded, leading to the decrease of the well-known RT-
DBS performance criterion (the number of transactions that
complete before their deadline).

To support these applications, some techniques based
on QoS guarantee have been proposed to control the tran-
sient overshoot. They are often based on feedback control
real-time scheduling theory [6][7]. Up to now, the major
drawback is that in case of conflicts between transactions,
some transactions are blocked, or aborted and restarted.
This may lead to the transactions miss deadlines. To ad-
dress this problem, in this paper, we have extended the
feedback-based miss ratio control by using a multi-versions
data architecture. This limits data access conflicts between
transactions, enhancing then the concurrency and limits the
deadline miss ratio.

The main objective of our approach is to maximize the
number of transactions which meet their deadlines. At the

∗Real Time Database Systems

same time, our work aims to support a certain freshness for
the data accessed by timely transactions under a condition:
the fixed maximum size of the RTDB. To this purpose, we
merge two approaches previously proposed in [4] and [5].
In the new mixed approach, the number of versions is dy-
namically adjusted, but does not have to exceed a threshold
which is a maximum data versions number, and also does
not have to exceed a fixed threshold which is the maximum
database size. The remaining of the paper is organized as
follows. Section 2 describes the real-time database model.
In Section 3, our proposed model is described. Some simu-
lation results are given in Section 4. In Section 5, we con-
clude the paper and give some perspectives.

2 Real-Time Database model

We consider firm RTDBS model, in which tardy transac-
tions1 are aborted because they are useless after their dead-
line, and we consider a main memory database model in
which the CPU is the main system resource taken into ac-
count. Data objects are classified into either real-time or
non real-time data. In our model, we consider mainly real-
time data.

Transactions can be classified into two classes: update
transactions and user transactions. Update transactions are
used to update the values of real-time data in order to reflect
the state of real world. Update transactions execute period-
ically and have only to write real-time data. User transac-
tions, representing user requests, arrive aperiodically and
may read real-time data, and read or write non real-time
data.

3 Multi-Versions Data-Feedback Control
Scheduling Architecture

We have based our work on [2][3]. We have extended the
FCS architecture by exploiting several versions of real-time
data, and then proposed the Multi-Versions Data-Feedback
Control Scheduling (MVD-FCS) approach [4][5]. In this

1Transactions that have missed their deadlines.

Control
Concurrency

Transactions
Real−Time Data

Scheduler

Ready Queue Transactions

Deadline
Controller

Aborted

Freshness
Manager

V1,1

V1,2

V1,3

V2,1

V2,2

V2,3

Vn,1

Vn,2

Vn,3

Transactions
Handler

Blocked Transactions

Real−Time Data Manager

Sending

Restart /

Abort /
Suspend

MDE

Real−Time Data Access

Executing

Data−1 Data−2 Data−n

....

....

....

Transactions

Completed

Figure 1. Multi-Versions Data - Feedback Con-
trol Scheduling Architecture

section, we present a new approach which enhances MVD-
FCSA depicted in Figure 1 where the solid arrows repre-
sent the transaction flows and the dotted arrows represent
the real-time data flows.

In the FCSA [2], two actions are considered important
for improving the MVD-FCSA service:

• In case of conflict between transactions, when a higher
priority transaction uses the data item, transactions
with lower priority will be blocked.

• FM blocks user transactions if the accessed data are
stale.

To enhance this protocol and to minimize the transac-
tion miss ratio, we have proposed the MVD-FCSA, which
consists of the creation of data versions as soon as conflicts
(read-write) occur between transactions.

The majority of MVD-FCSA components exist in the
classical feedback control scheduling architecture [2], but
they are adapted as follows: the eeal-time transactions
scheduler, the deadline controller (DC) and the freshness
manager (FM) are presented in [4] .

The Real-Time Data Manager is used to guarantee the
data freshness and to enhance the deadline miss ratio even
in the presence of conflicts and unpredictable workloads. To
achieve this goals, in [5] we have used a MVD-FCSA with
a fixed number of data versions.This number is fixed in ad-
vance by the DBA according to QoS requirement level, and
it is the same for each real-time data. In [4], we have en-
hanced this approach by allowing the dynamic adjustment
of the versions number. For each data, we have a versions
queue. The queue is continually updated in order to limit
the number of data versions by supressing/adding versions,
based on both the data freshness and MDE criterion.

In this paper, we have extended this last approach by tak-
ing into account the database size constraint. We merge the
two approach described in [4] and [5] , i.e. the number of
data versions is dynamically adjusted and does not have to
exceed the fixed threshold representing the number of data

versions, and we have considered in the same time a thresh-
old representing the database size. In this new approach,
a data item will be accessed only if it’s version number is
lower than the maximum database size. This way, RTDB
size constraints are respected. The respect of the threshold
of the RTDB size is a practical factor for RTDBS specifica-
tion.

The database consistency can be maintained using
the Concurrency Control. We use 2PL-HP (Two Phase
Locking-High Priority Protocol) where if a higher prior-
ity transaction accesses a data item, then other transactions
(with lower priority) will be blocked. Otherwise, the trans-
action is aborted and restarted. Consequently, the 2PL-
HP might increase the execution time of transactions. This
leads the transaction to miss their deadlines. To address this
problem, i.e. to alleviate this risk, we propose (1) the MVD
technique that allows user transactions to access a less re-
cent data version when update transaction writes a new data
version, and (2) an adapted 2PL-HP when the maximum
number of versions is reached. The priority is applied on
transactions group that accessed to the same data version
[4]. The priority of transactions group corresponds to the
highest transaction priority among all transactions in this
group.

4 Simulations and results

4.1 Simulations

The simulated workload consists of update and user
transactions, which access data. Update transactions oc-
cupy approximately 50% of the workload. The period of
update transaction (Periodi) is uniformly distributed and
estimated execution time is given by: ExecutionTime =
NbOfOperations * OpExecTime, where NbOfOperations
and the OpExecTime represent respectively the number of
operation in the transaction Ti and the execution time of
an operation. The model consists of eight components.
We have used two transactions generators, an update trans-
actions generator (UpdateTransGen) which generates up-
date transactions and a user transactions generator (User-
TransGen) which generates user transactions. The work-
load model characterizes transactions in terms of the num-
ber of read/write operations. Update transactions can only
write one data. Transactions are scheduled in a ready queue
according to their priority. The priority assignment formula
is given by P(Ti)= (-1) * deadline (Ti). Deadline controller
(DC) uses three controlled variables: transaction deadline
(deadline), current time (StartTime) and minimal execution
time (ExecutionTime). The deadline formula is calculated
as follows: deadline (Ti) = StartTime + ExecutionTime *
(1 + SlakTime), where SlakTime is a constant that provides
control over tightness/slackness of transaction deadlines.

Parameter Meaning Value
NbOfOperations Number of operations in an

user transaction
[1, 5]

OpExecTime Execution time of an operation 1s
Periodi Periodicity of update transac-

tion
[1000ms,
5000ms]

Table 1. Parameters of Simulation

In the sets of experiments, we have varied the database
size and the maximum number of data versions for each data
item. The database size represents the number of versions.
Table 1 summarizes simulations parameters.

4.2 Results

Since in our approach we have only extend the transac-
tions flows of the classical FCSA, the performance metric
in our experiments is the success ratio. The graphical re-
sults show the miss ratio of transactions when using MVD-
FCSA. We have evaluated the behavior of the system by
varying a set of parameters:

1. The threshold of data versions number.

2. The threshold of database size.

3. The number of transactions.

4.2.1 Experiment 1:

We use our mixed approach (dynamic adjustment of data
versions with maximum fixed number). In Figure 2, we
have fixed a threshold of data versions number (equal to 4
versions) and we have varied the database size (500, 750,
1000). In Figure 3, we have also varied the database size,
while the threshold of data versions number is equal to 6.

Figures 2 et 3 show the effects of varying the database
size. The resulting success ratio increases according to the
increase of the database size.

4.2.2 Experiment 2:

We also use the mixed approach of MVD-FCSA. We have
fixed the database size and we have varied the threshold of
data versions number. Compared to the effect of using a
maximum of six versions, the use of four versions shows a
relatively high success ratio, as shown in Figures 4.

4.3 Discussions

We have compared the system performances, in terms
of miss ratio, by varying the database size and by varying
the maximum number of data versions. All experiments
simulation show that:

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of update transactions

Threshold of Database = 500
Threshold of Database = 750
Threshold of Database = 1000

(a) Update transactions

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

Threshold of Database = 500
Threshold of Database = 750
Threshold of Database = 1000

(b) User transactions

Figure 2. Simulation results when using the
mixed approach of MVD-FCSA (maximum
number of versions = 4).

1. MVD-FCSA minimizes transactions miss deadline
(compared to the classical FCSA).

2. The success ratio increases according to the decrease
of the number of versions.

3. The success ratio increases according to the increase
of the database size.

4. The increase of the versions number is the most signif-
icant and influential criterion on success ratio.

5 Conclusion and future work

In this paper, we have presented the multi-versions data-
feedback control scheduling architecture for QoS manage-
ment. We have used multi-versions data with dynamically
adjusted number of versions while taking into account the
RTDB size constraint.

Simulation results show that MVD-FCSA with dynami-
cally adjusted number of data versions may be applied ef-
ficiently in RTDBS, i.e more transactions meet their dead-

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of update transactions

Thresold of database = 500
Thresold of database = 750
Thresold of database = 1000

(a) Update transactions

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

Threshold of Database = 500
Threshold of Database = 750
Threshold of Database = 1000

(b) User transactions

Figure 3. Simulation results when using the
mixed approach of MVD-FCSA (maximum
number of versions = 6).

lines. We note that the respect of the threshold of the RTDB
size might be a practical factor for RTDBS specification.

We plan to extend this work in several ways. We will
take into account the data importance. Indeed, in case of
a small threshold of the RTDB size, all data beyond the
threshold value are not accessed whatever their importance.
Further, we also plan to extend our work to manage derived
data and to consider other aspects to study different com-
ponents of the feedback control scheduling architecture for
QoS management in RTDBS.

References

[1] R. Abbott and H. Garcia-Molina. Scheduling Real-Time
Transactions: A Performance Evaluation. International Jour-
nal of Distributed and Parallel Databases, 1(2), 1988.

[2] M. Amirijoo, J. Hansson, and S. H. Son. Algorithms for Man-
aging Real-time Data Services Using Imprecise Computation.
In Proceedings of International Conference on Real-Time and
Embedded Computing Systems and Applications (RTCSA),
Taiwan, 2003.

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of update transactions

Four versions (the threshold of database size=1000)
Six versions (the threshold of database size=1000)
Four versions (the threshold of database size=500)
Six versions (the threshold of database size=500)

(a) Update transactions

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
ss

 r
at

io

Number of user transactions

Four versions (the threshold of database size=1000)
Six versions (the threshold of database size=1000)
Four versions (the threshold of database size=500)
Six versions (the threshold of database size=500)

(b) User transactions

Figure 4. Simulation results of using the
mixed approach of MVD-FCSA: varying the
number of versions and the threshold of
database size.

[3] M. Amirijoo, J. Hansson, and S. H. Son. Error-Driven QoS
Management in Imprecise Real-Time Databases. In Proceed-
ings of 15

th Euromicro Conference on Real-Time Systems
(ECRTS), Portugal, 2003.

[4] E. Bouazizi, C. Duvallet, and B. Sadeg. Management of
QoS and Data Freshness in RTDBSs using Feedback Con-
trol Scheduling and Data Versions. In 8

th IEEE International
Symposium on Object-oriented Real-time distributed Com-
puting (IEEE-ISORC’05), Washington, 2005.

[5] E. Bouazizi, B. Sadeg, and C. Duvallet. Ordonnancement
contrôlé par rétroaction dans les SGBD temps réel. In 13

th

conference on Real-Time Systems (RTS), Paris, France, 2005.
[6] C. Lu. Feedback Control Real-Time Scheduling. PhD thesis,

University of Virginia, May 2001.
[7] C. Lu, J. Stankovich, G. Tao, and S. Son. Feedback Con-

trol Real-Time Scheduling: Framework, Modeling and Algo-
rithms. Real-Time Systems, 23(1/2):85–126, 2002.

[8] K. Ramamritham. Real-Time Databases. Journal of Dis-
tributed and Parallel Databases, 1(2):199–226, 1993.

[9] K. Ramamritham, S. Son, and L. DiPippo. Real-Time
Databases and Data Services. Real-Time Systems, 28:179–
215, 2004.

