
Management of QoS and Data Freshness in RTDBSs∗using Feedback Control
Scheduling and Data Versions

Emna Bouazizi, Claude Duvallet, Bruno Sadeg
LIH, Université du Havre, 25 rue Philippe Lebon

BP 540, F-76058 LE HAVRE Cedex
{Emna.Bouazizi,Claude.Duvallet,Bruno.Sadeg}@univ-lehavre.fr

Abstract

These recent years, a lot of real-time applications are
becoming increasingly sophisticated in their data needs,
resulting in a greater demand for real-time data services.
Real-time database systems (RTDBS) can manage these
applications, but the workload in these systems is unpre-
dictable, then RTDBS may become overloaded. A lot of
work dealing with quality of service (QoS) has been done
to control the transient overshoot. They are based on feed-
back control real-time scheduling theory. In this paper, we
propose a work which allows to execute transactions before
their deadlines while using the fresh data. We have extended
the feedback-based miss ratio control, by using a multi ver-
sions data architecture to guarantee a set of requirements
on the behavior of RTDBS and we have considered two data
managment policies. In the first policy, we have limited the
maximum number of data versions and this number is the
same for all the data items. In the second policy, the num-
ber is dynamically adjusted for each data item.

1 Introduction

Currently, the demand for real-time database services
has increased in most applications where it is desirable to
execute transactions within their deadlines. They also have
to use precise and fresh data in order to reflect the continu-
ously changing external environment.

To support these applications, some techniques based on
the Quality of Service (QoS) guarantee have been proposed,
we discuss some issues in section 2. In this paper, we pro-
pose to use data versions, based on feedback control real-
time scheduling theory, to guarantee a set of requirements
on the behavior of RTDBS and to maximize the number
of transactions which meet their deadlines. We have based

∗Real Time DataBase Systems

our work on results already found in order to take into ac-
count the QoS in RTDBS using the Feedback Control Real-
Time Scheduling (FCS) [6] [7]. Our contribution consists
of adding the notion of data versions to manage the trans-
actions in order to limit the data access conflicts between
transactions, and then to enhance the conccurency.

The main objective of our approach is to limit the dead-
line miss ratio. In this article, we begin by a presentation of
existing approaches on which is based our work (see section
2). Then, in section 3, we present the model we consider.
In section 4, we describe our architecture for using multi
versions data. The benefits of our architecture are discussed
in section 5. Section 6 shows the details of the simulation
settings and the evaluation results. We conclude this article
by a discussion about this work and by the presentation of
our future works.

2 Approaches related to QoS

In RTDBS, new techniques have been designed to man-
age real-time transactions [1] [8]. These techniques use
feedback control scheduling theory [6] and imprecise com-
putation in order to provide an acceptable RTDBS behavior.
Many works are based on the QoS specification to control
the transient overshoot of RTDB [6] [2].

In [2], Amirijoo et al have proposed two algorithms:
FCS-IC-1 and FCS-IC-2 (Feedback Control Scheduling -
Imprecise Computing). These algorithms have been pro-
posed to dynamically balance the workload and the quality
of the data and transactions. The authors employ three feed-
back control scheduling policies, called FC-M (Feedback
Miss Ratio Control), FC-U (Feedback Utilisation Control)
and FC-UM (Feedback: Integrated Utilisation Miss Ratio
Control), to control the user transactions quality in the pres-
ence of unpredictable workload and inaccurate execution
time estimations. In [7], the authors suggest a QoS-sensitive
approach, called QMF (a QoS-sensitive approach for Miss
Ratio and Freshness guarantees) using a dynamic scheme

to balance the user transactions and the update transactions
workloads. To provide differentiated services in terms of
miss ratio, they have extended in [4] their QMF approach
which can support a single class of miss ratio and freshness
guarantees in RTDB. They call the new approach QMF-Diff
(QMF with Differentiated Services) . A DBA1 can explic-
itly specify the required database QoS including the miss
ratio differentiation among the service classes.

Monitor

Precision
Control

Admission
Control

U
Unew

Source1

Sourcem

....

User Transactions

Stream1

Streamm

....

Update Transactions
Transaction Handler

FM CC BS

MDE

Miss Percentage
MDE

Abort/Restart/Preempt

Dispatched

Ready Queue

Block Queue

Miss Percentage

QoD
Manager

Controllers
Miss Ratio/Utilization

Freshness

CPU Utilization

Blocked

Figure 1. A FCS Architecture

3 Real-Time Database model

We consider firm RTDBS model, in which tardy transac-
tions2 are aborted because they are useless after their dead-
line, and we consider a main memory database model in
which the CPU is the main system resource taken into ac-
count.

3.1 Data model

Data objects are classified into either real-time or non
real-time data. In our model, we consider mainly real-time
data.

3.2 Transaction model

Transactions can be classified into two classes: update
transactions and user transactions. Update transactions are
used to update the values of real-time data in order to reflect
the state of real world. Update transactions execute period-
ically and have only to write real-time data. User transac-
tions, representing user requests, arrive aperiodically and
may read real-time data, and read or write non real-time
data.

1Database Administrator
2transactions that have missed their deadlines

Control
Concurrency

Transactions
Real−Time Data

Scheduler

Ready Queue Transactions

Deadline
Controller

Aborted

Freshness
Manager

V1,1

V1,2

V1,3

V2,1

V2,2

V2,3

Vn,1

Vn,2

Vn,3

Transactions
Handler

Bloqued Transaction

Real−Time Data Manager

Sending

Finished

Transactions

Restart /

Abort /
Suspend

MDE

Real−Time Data Access

Executing

Data−1 Data−2 Data−n

....

....

....

Figure 2. MVD Architecture

4 Multi Versions Data-Feedback Control
Scheduling Architecture: MVD-FCSA

The MVD-FCSA is shown in Figure 2. We have based
our work on the work done by Amirijoo et al. in RTDBS
[2]. In this work, the authors have used FCSA (see Fig-
ure 1). In our work, we have added a new notion which
consists of the creation of data versions as soon as a conflict
(read-write) occurs between transactions. In our system, we
extend the FCS architecture by using the notion of Multi
Versions Data. Figure 2 depicts our MVD-FCS architecture
where the solid arrows represent the transaction flows and
the dotted arrows represent the real-time data flows.

4.1 Scheduling real-time transactions

Transactions are scheduled in the ready queue according
to their priority. The priority of a transaction depends on
both its deadline and its type (update or user transaction).
Hence, we merge EDF policy with respect to type and pri-
ority.

4.2 Deadline Controller

It controls transaction validity [5] [3]. If the current
time is greater than transaction deadline, transaction will
be aborted. Otherwise, Deadline Controller (DC) makes a
second verification, where a transaction is accepted only if
the sum of the minimal execution time and the current time
is lower than transaction deadline, otherwise the transac-
tion will be aborted. If the two verifications steps succeed,
then the transaction is transferred to the Freshness Manager
(FM).

4.3 Freshness Manager

It checks the freshness of acceded data just before a
transaction commits. This way, the data accessed by com-
mitted transactions are always fresh at commit time. If the

2

accessed data is fresh, transaction can be executed and it is
sent to the transactions handler. Otherwise, if the accessed
data item is currently stale or will be before the deadline
of the transaction, FM blocks the user transaction. The
blocked transaction will be transferred from the blocked
queue to the ready queue as soon as the corresponding up-
date has committed.

4.4 Real-Time Data Manager

The main objective of this component is to guarantee the
data freshness and to enhance the deadline miss ratio even
in the presence of conflicts and unpredictable workloads.
To achieve this goals, we use two approaches that use the
MVD technique.

In our first approach, we use a fixed number of data ver-
sions. When update transactions want to modify a real time
data, a new data version is created. Most conflict cases
come from incompatible access patterns when update trans-
action want to modify data item that is accessed by user
transaction. One of these transactions must be aborted and
restarted according to the used conccurency control proto-
col. Then the risk that transactions miss their deadline in-
creases. MVD notion is used to alleviate this risk. We keep
all data values that correspond to different versions of the
same data item. The maximum number of versions is lim-
ited and is fixed in advance by the DBA according to QoS
requirement level.

In our second approach, we dynamically adjusted num-
ber of data versions. For each data, we have a queue of
versions . The queue is continually updated in order to limit
the number of data versions by supressing/adding versions,
based on both freshness and MDE criterion The Size of each
Versions Queue, denoted SVQ, is dynamically adjusted, and
is defined as follows:

SV Q = IntegerPart[
AV Ij

Periodi

] (1)

where Periodi is the periodicity of transactioni, and
AV Ij is the absolute validity interval of dj .

4.5 Concurrency Control with MVD

Database consistency can be maintained using concur-
rency control protocols. Here, we use 2PL-HP (Two Phase
Locking-High Priority Protocol) where if the higher priority
user transaction reads a data item, then update transaction
(with lower priority) will be blocked. Otherwise, the user
transaction is aborted and restarted. Consequently, the 2PL-
HP might increase the execution time of blocked/aborted
transactions. This leads to the transaction to miss their
deadline. To address this problem, we have proposed the
MVD technique that allows user transactions to access an

old data version when update transaction writes a new data
version , and an adapted 2PL-HP when the maximum num-
ber of versions is reached. (cf. Algorithm 1).

Algorithm 1: 2PL-HP adapted protocol for MVD

Trup : update transaction (write access).

Truser : user transaction (read access).

Gr(Truser) : user transactions group accessing a data version.

Gri(Truser) : nth user transactions group.

nb_group : number of transactions group.

begin
if Priority (Trup) < Priority (Gr(Truser)) then

Trup blocked waiting the release of version
else

for i from de 1 to nb_groups do
if Priority (Trup) > Priority (Gri(Truser))
then

abort and restart of Gri(Truser)
endif

endfor
endif

end

NOTE: the priority of transactions group correspond to
the highest transaction priority among all transactions in
this group.

5 Benefits of MVD-FCSA

MVD-FCSA is a good solution for QoS guarantees. By
comparison with the classic feedback control scheduling ar-
chitecture, it allows to limit the deadline miss ratio, to sup-
port freshness for the data accessed by timely transactions
(even in the presence of unpredictable workloads). So the
data used by committed transactions are always 100% fresh
(at commit time). MVD-FCSA permits also to guarantee
the quality of data (QoD: precision and freshness) and qual-
ity of transaction (QoT) which are enhanced by alleviating
the risk of transaction miss deadline, and therefore it en-
hance the QoS.

6 Simulations and results

The simulated workload consists of update and user
transactions, which access data.

As shown in Figure 3, when a data item is without ver-
sions, with two versions and with four versions, the result-
ing success ratio increase according to the increasing of the
number of versions.

Compared to the effect of using MVD-FCSA with fixed
number of versions, using of MVD-FCSA with dynamically

3

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
s

ra
tio

Number of update transactions

Without data versions
Two versions
Four versions
Number of versions dynamically adjusted

(a) For update transactions

 0

 20

 40

 60

 80

 100

 20 40 60 80 100

S
uc

ce
s

ra
tio

Number of user transactions

Without data versions
Two versions
Four versions
versions’s number dynamically adjusted

(b) For user transactions

Figure 3. Simulation results of the MVD-FCSA

adjusted number of data versions shows a relatively high
success ratio as shown in Figure 3.

We also compared the system performances, in terms of
miss ratio, by using the transactions types. In comparison
with the four curves showed in Figure 3(a), the curves in
Figure3(b) are more near. This is because, in our approach,
the update transactions have generally, the higher priority.
That’s why, in Figure 3, the increasing of number of ver-
sions is the most significant and influential criterion on suc-
cess ratio.

It has been shown that MVD-FCSA minimize the trans-
action miss deadlines. We have also seen that the trans-
actions miss ratio and the number of versions increase to-
gether.

In MVD-FCSA, data freshness and data precision are
also required. This way, real-time data managment guar-
antee both the QoD and the QoT by decreasing the trans-
actions miss ratio. The experiments show that MVD-FCSA
is useful and particularly successful with dynamically ad-
justed number of data versions, notably when the number
of transactions increases.

7 Conclusion and future work

In this work, we have presented an enhancement of the
feedback control scheduling architecture for quality of ser-
vice management in which we use multi versions data. This
improvement is used to minimize the number of conflicts by
minimizing the number of aborted transactions when using
an adapted 2PL-HP concurrency control protocol.

We plan to extend this work in several ways. We will
consider other aspects to study different components of the
feedback control scheduling architecture for quality of ser-

vice management in RTDBS. Among them, will deal with
imprecise computing [2] applying to video contents.

8 Acknowledgement

This works is supported by the ACI project #1055
(French Research Ministry).

References

[1] R. Abbott and H. Garcia-Molina. Scheduling Real-Time
Transactions: A Performance Evaluation. International Jour-
nal of Distributed and Parallel Databases, 1(2), 1988.

[2] M. Amirijoo, J. Hansson, and S. H. Son. Algorithms for Man-
aging Real-time Data Services Using Imprecise Computation.
In Proceedings of International Conference on Real-Time and
Embedded Computing Systems and Applications (RTCSA),
Taiwan, 2003.

[3] C. Date. An Introduction to Database Systems. Addison-
Wesley, 1985.

[4] K. Kang, S. Son, and J. Stankovic. Service Differentiation in
Real-Time Main Memory Databases. In 5th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed
Computing, Washington D.C., April 29 - May 01 2002.

[5] C. Liu and J. Leyland. Scheduling Algorithms for Multipro-
gramming in Hard Real-Time Environment. Journal of the
ACM, 20(1):46–61, 1973.

[6] C. Lu. Feedback Control Real-Time Scheduling. PhD thesis,
University of Virginia, May 2001.

[7] C. Lu, J. Sankovic, , G. Tao, and S. Son. Feedback control
real-time scheduling: Framework, modeling and algorithms.
Journal of Real-Time Systems, 23(1/2), 2002.

[8] K. Ramamritham. Real-Time Databases. Journal Of Dis-
tributed and Parallel Databases, 1(2):199–226, 1993.

4

