
Road Traffic Management
Based on Ant System and Regulation Model

Cyrille Bertelle, Antoine Dutot, Sylvain Lerebourg and Damien Olivier
Laboratoire d'Informatique du Havre,

25 rue Philippe Lebon, BP 540
76058 Le Havre Cedex - FRANCE

E-mail : {Cyrille.Bertelle, Antoine.Dutot, Sylvain.Lerebourg,
Damien.Olivier}@univ­lehavre.fr

KEYWORDS: Transport, distribution, road traffic, ant algorithm, multiagent systems, neural networks.

ABSTRACT
Decision support system for road traffic management can be used for freight transport, people transport but also for

site evacuation. We deal with two aspects of the decision support system in a same global architecture: one for road
users to choose the shortest path in time between two points and the other for road traffic management to regulate the
traffic and to avoid jam. These two aspects interact. The cartography is represented by a weighted digraph. The weights
evolve according to the traffic and the graph is therefore dynamic. The search of the shortest path is based on an ant
algorithm because it is well suited for dynamic environment. The regulation system is based on a neural network.

1 CONTEXT

1.1 Road Traffic Management Necessity
The transport development must face up to many

constraints like:

• Increase of traffic whereas urban infrastructures are
not very evolutionary;

• Substructures realization and expansion limitation
due to the available space and the costs;

• Problem of pollution which comes from transport.
Reduction of the loud and atmospheric pollution for
example;

• Deregulation and concurrency between the modes of
transport.

So, it is necessary to find solutions to manage road
traffic. Two aspects can be considered, in one hand
Decision Support System (DSS) to help and to inform
users and in the other hand regulation system based on
control planning (Virtual Message Signs (VMS), traffic
lights, etc).

1.2 Global Architecture
We propose a global architecture based on two main

parts (see figure 1):

• The real world which is split in three elements:

− the traffic which contains, in one hand, all
mobile elements (cars, pedestrians, ...) described
with different levels of autonomous behaviour
and, in the other hand, spatio­temporal
organizations which are predictable (school
outs, ...) or not (jam, accident ...);

− the environment which contains all the road
infrastructure and logistic planning;

− the control system which contains sensors
(webcams, data traffic magnetic sensors, ...) and
effectors (VMS, traffic lights, ...).

• The model which is split in the following elements:

− information collection and processing in order
to use them on the solving level;

− a dynamic weighted digraph representing these
informations and the traffic flow;

− a regulation system based on this graph and
managing the control system;

− a DSS which use the dynamic graph and the
regulation control. A multimodal interface
informs and helps different users with respect to
their profiles.



The information update and its adaptive treatment
give the dynamic aspect of the global architecture as
described in figure 1. So, it is typically a complex system
model including retro­action phenomena. In this paper
we develop two points of this architecture: the decision
support system which suggests shortest paths obtained
from a dynamic graph and regulation system based on
multi­layer perceptron with backpropagation algorithm.

Figure 1: Global architecture for road traffic
management

2 ANT ALGORITHM FOR
CONSTRAINED PATHS
COMPUTATION

2.1 Ant Algorithms
Ant algorithms are a class of meta­heuristics that can

yield near­optimal solutions to hard optimization
problems, where algorithms that yield exact solutions are
not an issue. Ant algorithms maintain a population of
agents that exhibit a cooperative behaviour (Langton,
1987) by continuously foraging their territories to find
food (Gordon, 1995) using optimal paths, creating
bridges, constructing nests, etc.

This form of self­organization appears from
interactions that can be either direct (e.g. mandibular,
visual) or indirect. Indirect communications arise from
individuals changing the environment and other
responding to these changes: this is called stigmergy. For
example, ants deposit signals named pheromones in the
environment that influence others: the more pheromone
on a path, the more ants tend to follow it. As pheromones
evaporate, long paths tend to have less pheromone than
short ones, and therefore are less used than others (binary
bridge experiment).

Such an approach is robust and well supports
parameter changes in the problem. Besides, it is
intrinsically distributed and scalable. It uses only local
informations (required for a continuously changing
environment), and find near­optimal solutions. Ant
algorithms has been applied successfully to various
combinatorial optimization problems like the Travelling
Salesman Problem (Dorigo and Gambardella, 1997),
routing in networks (Caro and Dorigo, 1997), (White,
1997) or for distributed simulation (Bertelle et al.,
2002b) but also to DNA sequencing (Bertelle et al.,
2002a), graph partitioning (Kuntz et al., 1997) and
clustering (Faieta and Lumer, 1994).

2.2 Graph
The cartography is represented by a weighted digraph

G = (V, E) where V is a set of vertices representing
crossroads or any other significant information (school,
town hall . . . ) and E = V×V is a set of directed edges
e = (vi , vj ). Thus each segment of a street that is
between two adjacent vertices as defined previously is
represented by either one or two directed edges. Two
directed edges, one in either direction, are used if the
street is two­way, and a single directed edge is used if it
is a one­way segment. The edge weight wij between the
vertices vi and vj is a dynamic factor which represents the
time to cross the edge (vi , v j ) and the traffic load.

2.3 Dynamic aspects
Weights evolve according to the traffic and the graph

is therefore dynamic and we have to find paths in this
graph. These changes are one of the major motivation for
using ant algorithms. A monotonic approach is one way
to search paths on a graph. It consists in regularly
applying a computation on a frozen copy of the dynamic
graph, then trying to use this information, though the real
graph is still evolving. This approach is problematic: the
graph can have changed during computation and results
may not be usable any more, creating discrepancies
between the real state and calculated paths. Furthermore,
it is not incremental, each time the algorithm is
performed anew.



Another way is to use an anytime algorithm. The
dynamic graph is considered as a changing environment
for computing entities that travel on the graph, taking
into account the changes as they appear, and storing the
solution directly in the graph, as an effect of their
evolution. Ant algorithms are well suited for that kind of
task as it has been shown in (Dorigo et al., 1996).

This approach is almost implicitly distributed. This
would not create many communications since the
algorithm only uses local informations and stores results
directly in the graph (that is, directly in the computing
resources local memory).

2.4 Algorithm
We search in the graph some paths between two

vertices v0 and vn . The resolution method is distributed
and based on auto­organization mechanisms. We
continually release numerical ants on the dynamic graph,
and allow them to find routes between pairs of vertices.
The ants deposit numerical pheromones on edges. The
amounts of pheromone deposited is a function of the
length and congestion of paths. Ants are attracted by
weights of edges and pheromones. The evaporation
allows to forget bad paths. The ants tend to converge on
paths which are the fastest.

To be able to distribute the computation, we have
divided the algorithm in two parts and for each we have a
specific time.

• The environment. It is represented by the dynamic
graph. Its major role is to manage the ant population,
evaporation phenomenon and simulation of weights
on the edges. We store also in the vertex vn the
shortest path which comes from v0 , the minimal
global cost W0n of the path from v0 to vn . Due to the
dynamic change of weights the duration of the
shortest path may change when another ant covers
the path crossing the same vertices and we note t0n

the instant where the ant has found the same path.
For a given step, we have:

tenv = discrete time of the environment
BEGIN
  birth of ants on the vertex v0
  pheromone evaporation (see (2))
  weights update
  IF t0n << tenv // This depends on path
    // length. No ants have used the path
    // since a long time
  THEN W0n = + ∞
  ENDIF
  tenv = tenv + 1
END

• The ants. Ants try to go from the vertex v0 to the
another vertex vn . Ants manage their displacements
according to times and pheromones. They also drop
pheromones on edges. Three states are possible for

an ant looking for food, reaching the final vertex vn,
and coming back to the source. For one ant located
on vi, we have :

tant = discrete time for the ant
vertex = vi
ant_state ∈ {search, arrived, go_back}
BEGIN
  IF ant_state == search
    THEN
    //The ant must choose an adjacent vertex
    //to i
    Ai = set of the adjacent vertices of i
         Which have not been traversed yet
         by the ant
    FORALL j ∈ Ai DO
      Compute the probability pij (see (1))
        that the ant chooses to hop from
        the vertex i to j
    ENDFOR
    Select the next vertex vk
      according to the probability pij
    Wait during the time wik - 1
    vertex = vk // Move to k
    IF vk == vn
      THEN ant_state = arrived
    ENDIF
  ENDIF
  IF ant_state == arrived
    THEN
    Update if necessary shortest path
      and times t0n
    ant_state = go_back
  ENDIF
  IF ant_state == go_back
    THEN
    Deposit pheromone on path
      used by the ant (see (4))
    death of the ant
  ENDIF
  tant = tant + 1
END

Let qij be the amount of pheromone trail deposited on
the edge connecting i and j, wij the weight of the edges
which depends on the time of the traffic flow to connect
the location i and j, it is a dynamic variable. The
probability that an ant when it is located on i choose j is:
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Where Ai is the set of adjacent vertices of i which
have not been traversed yet by the ant. The amount of
pheromone qij on the edge (vi , vj) is modified by the
environment and by the ants. The environment regularly
updates this pheromone quantity using an evaporation
rate, noted (1 - ρ):
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where 0 ≤ ρ ≤ 1 and  old
ijq  and  new

ijq are respectively

the pheromone quantity before and after the update.

An ant which has found a path between the two
vertices v0 and vn and so come back to start vertex,

Initial graph

Shortest path after a modification of weightShortest path

Figure 2 : Search of a shortest path on a simple dynamic



modify the pheromone quantity by reinforcement rate,
noted ∆q :

                                   
ijW

K
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where K is a constant and Wij the global cost of the

path between i and j.
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Figure 3 : Search of a shortest path on a simple dynamic Manhattan



2.5 Results
We show two examples of the algorithm execution.

The first one is a very simple graph (see figure 2), the
first node is A and the last node is F . We search the
shortest path while we make vary the weight of an edge
(K, J) located on the shortest path, during the calculation.
The result is presented on the third graph. In this
example, at each environment time step, 4 ants are
released, α = 3, β = 1, ρ = 0.6 and K = 1.

The second one is based on a Manhattan
representation with a ring road (see figure 3). The first
graph shows the initial situation, the ring road is the
fastest way then we jam it, so a new path is detected by
the ants. The second graph shows the shortest path
obtained which takes the ring road, the last one is the
solution when the ring road is jamed. In this example, at
each environment time step, 10 ants are released, α = 3,
β = 1, ρ = 0.9 and K = 2.

3 REGULATION MODELLING
We deal now with road traffic regulation. We use for

this purpose a model, using an agent­based represen-
tation for road traffic and a neuronal model for the
regulation.

This study (Foote, 2002) presented in the following
will look at traffic flow on a Manhattan­style road grid.
At each crossroad, there is a traffic lights system
deciding which cars are going to cross. Cars enter the
grid from the outside and decide which direction they
wish to use at each crossroad. We use the Madkit
package (Gutknecht and Ferber, 1997) to manage the
agent world. The neural network is a multi­layer
perceptron implementing a backpropogation algorithm.

3.1 Controlling multi­agent system
With the rise of multi­agents system, computer

scientists are coming across the control problem
concerning such virtual world regulation. In general, we
cannot predict how a population of many agents, acting
on each other, will evolve. Since multi­agent systems
often contain hundreds or thousands entities, we can no
longer control each of these elements precisely as we
don't know how it might evolve. We have to develop a
system to control the situation globally.

The generic agent organization used in this work is
based on theoretical study of A. Cardon (Lesage et al.,
1999). He describes how a multi­agent system can be
divided into three types of agents:

• Aspectual Agents are the basic agents that represent
the target population. In our case, they represent cars
and traffic lights in a town;

• Morphological Agents deal with aspectual agents
measurements. They collect only some informations
which lead to describe evolutive and adaptive
organizational aspects. It is a kind of projection of
all agent characteristics onto a smaller dimensional
space. In our case, a morphological agent plays a
statistic collection service, taking into account for
example, cars position and information about their
displacements.

• Analytical Agents are some kind of rulers of our
agent population, looking at the statistics provided
by the morphology agents, and then acting on them
to control the global behaviour of the system. The
analytical agents do not directly modify the
behaviour of any particular agent, but rather,
indirectly shape the evolution of the aspectual agents
as a whole.

Here, we present an application of this theoretical
model, based on a neural network. Our problem is as
follows: how can we maximise the flow of traffic
through a road network? The input layer of our neural
network will process information from the morphological
space of the aspectual agents and then give an output
figure which represents the global state of the network.
This figure can then be used to decide on the action to be
taken to increase traffic flow. Since in past situations we
know how the system evolved, we can also train the
neural network to anticipate the evolution of the system.

3.2 Neuronal Approaches Based Models
The regulation model uses an agent­based description

which is analysed by a neural network based on
multi­layer perceptron.

Agent­based description
The simulator is decomposed in three main parts:

• The environment is composed of a dynamical graph,
as described in section 2.2. A more accurate
representation is used, each road has its own length
and width and is implemented in bidimensional grid
where cars evolve from one position to another;

• The traffic lights manage the cars circulation at each
crossroad. Each one finds out the identities of its
neighbours, it looks for cars which arrive at its
crossroad and knows the direction that each car want
to go. The lights have two possible behaviours. The
dumb light acts in automatic mode. It sends requests
to its neighbours to know which space is available
on their crossroads. It lets cars go to its choosen
direction if there is space available at the target
crossroad. In cooperative light mode, all traffic
lights proceed sorting queues that they manage. The



longest queue is first managed and the associated
light lets cars go to their choosen direction if space is
available, else the second­longest queue acts and so
on ...

• The cars can be in one the three following states.
They are in the state moving when they have to go to
one crossroad (graph node) to another if there is no
car in front of it. When a car reaches its choosen
crossroad without having other cars in front of it, it
changes its state to atLight one. In this state, it sends
a message to the light telling which way it wants to
go. It then waits until the light gives it permission to
move. If a car has other ones in front of it, during its
move, it changes its state to the waiting one.

Moreover, the simulation manages input and output
fluxes between the simulated town (as Manhattan­style
road grid) and the exterior.

Multi­Layer Perceptron Regulation
The neural network used for the regulation is a

multi­layer perceptron. It is the analysis layer of the
generic agent organisation described previously (see
figure 4).

The network computes global variables to reduce
traffic jams. The three states of its output are: clear, busy
and getting blocked corresponding to no danger of
gridlock, slight danger and danger of gridlock. So the
retro­action of this analysis layer on the aspectual layer
consists in altering the following variables:

• waitTime corresponds to the delay between sending
batches of cars through the lights;

• carDispersion corresponds to the authorized cars
number able to come into the town from the exterior.

3.3 Experimentations
We show in figure 5, two windows of the visual

interface desktop of the simulator which represent
respectively a schematic view of the traffic and a traffic
observer curve. This last information gives the number of
cars which are moving at each step of the simulation. In
this example, the regulation leads to the preservation of
the fluidity, the global number of moving cars is
preserved between 100 and 150 units.

3.4 Regulation Feed­Back on Dynamic
Graph Modelling

The regulation system which acts on waitTime
variable, is able to give Nij the cars number on each edge
of the graph modelling the road traffic. Taking into
account some physical characteristics of each road
modeled with edge, we use a classical model to compute
the traffic flux (number of cars by second) associated
with each edge (see figure 6) and noted Fij . This model
is based on the definition of a critical number of cars
under which the fluidity is maintained and over which
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Figure 4 : Neural network based regulation

Figure 6: Flux model for road traffic



the fluidity quickly falls down. We then compute a
characteristic fludity­based time, expressed as:
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This characteristic time contributes to the regulation
feed­back of the regulation system on the dynamic graph
modelling the road traffic. In fact, each edge weight is
the sum of an observed time for crossing the road, noted
rij and the characteristic fluidity­based time defined
above:

                               ijijij rw δ+= (6)

4 CONCLUSION
We are developing an architecture of both a

regulation system and a decision support system based
on a dynamic graph. Ant algorithms are used and well
suited for adaptive aspects and anytime approaches of
dynamic traffic flow. Neural networks are used and well
suited for traffic flow regulation. We actually work on
future development concerning management of
heterogeneous informations flows from any kind of
sources (satellites, webcams, sensors) and multimodal
interfaces for the different users. We are searching to

extract the most important and urgent informations using
organizations of cooperatives/antagonists agents.
Multi­agent systems are adapted to find emergent
evolutionary solutions in dynamic problems.
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