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ABSTRACT

Decisionsupportsystenfor roadtraffic managementanbe
usedfor freight transport,peopletransportbut alsofor site
evacuation We dealwith two aspect®f thedecisionsupport
systemin a sameglobal architecture:onefor traffic regula-
tion to avoid jam andthe otherfor roadusersto choosethe
shortespathin time betweertwo points. Thesetwo aspects
interact. The cartographyis representedby a weighteddi-
graph. The weightsevolve accordingto the traffic andthe
graphis thereforedynamic. The regulationsystemis based
on a neuralnetwork. The shortestpathis basedon an ant
algorithmwell suitedfor dynamicervironments.

GLOBAL ARCHITECTURE FOR ROAD
TRAFFIC MANAGEMENT

Thetransportdevelopmentmustfaceup to mary constraints
like: substructuresealizationand expansionlimitation due
to the available spaceand the costs,reductionof the loud
and atmosphericpollution, deregulation and concurreng
betweerthe modeof transportandsoon. So, it is necessary
to find solutionsto manageoadtraffic. Two aspectsanbe
considered.Thefirst oneis aboutDecisionSupportSystem
(DSS)to help andinform users. The secondoneis about
regulation systembasedon control amenagemengVirtual
Messagesigns(VMS), traffic lights, ...).

We proposea global architecturebasedon two main parts
(seefigure 1):

e Therealworld whichis splitin threeelements:

— thetraffic which containsjn onehand,all mobile
elementgcars,pedestrians,.) describedvith dif-
ferentlevels of autonomoudehaiour and,in the
other hand, spatio-temporabrganizationswhich
are predictable(schoolouts,...) or not (jam, ac-
cident,...) ;
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— theernvironmentwhichcontainsall theroadinfras-
tructureandlogistic planning;

— the control systemwhich containssensorgweb-
cams, data traffic magnetic sensors,...) and
effectors(VMS, traffic lights, ...).

e Themodelwhichis splitin thefollowing elements:

— informationcollectionand processingn orderto
usethemonthesolvinglevel;

— adynamicweighteddigraphrepresentinghesein-
formationsandthetraffic flow;

— aregulationsystembasedon this graphandman-
agingthecontrolsystem;

— aDSSwhichusethe dynamicgraphandtheregu-
lationcontrol. A multimodalinterfaceinformsand
helpsdifferentuserswith respecto their profiles.

The information updateand its adaptve treatmentgive the
dynamicaspecbf theglobalarchitectureasdescribedn fig-

urel. So,it is typically a complex systemmodelincluding
retro-actiorphenomenaln this paperwe developtwo points
of this architecture:the regulation systembasedon multi-

layerperceptrorwith backpropagatioalgorithmandthede-
cisionsupportsystemwhich suggestshortespathsobtained
from adynamicgraph.

REGULATION MODELLING

The model for road traffic regulation usesan agent-based
representatioffior roadtraffic anda neuronalmodelfor the
regulation. This study(Foote,2002)presentedn thefollow-
ing will look at traffic flow on a Manhattan-styleoadgrid.
At eachcrossroadthereis a traffic lights systemdeciding
which carsaregoingto cross. Carsenterthe grid from the
outsideanddecidewhich directionthey wish to useat each
crossroad We usethe Madkit packaggGutknechtand Fer
ber, 1997)to managethe agentworld. The neuralnetwork
is a multi-layer perceptrorimplementinga backpropagation
algorithm.
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Figurel: Globalarchitecture

Controlling Multi-Agent System

Thegenericagentorganizationusedin thiswork is basedn
a theoreticalstudy of A. Cardon(Lesageet al., 1999). He
describediow a multi-agentsystencanbedividedinto three
typesof agents:

e AspectualAgentsarethe basicagentghatrepresenthe
target population. In our case,they representarsand
traffic lightsin atown;

e Morpholagical Agentsdealwith aspectuahgentsmea-
surementsThey collectonly someinformationswhich
lead to describeevolutive and adaptive organizational
aspectslt is akind of projectionof all agentcharacter
istics onto a smallerdimensionakpace.In our casea
morphologicalagentplaysa statisticcollectionservice,
takinginto accounfor example,carspositionandinfor-
mationabouttheir displacements.

e Analytical Agentsare somerulersof our agentpopula-
tion, looking at the statisticsprovided by the morphol-
ogyagentsandthenactingonthemto controltheglobal
behaiour of the system. The analyticalagentsdo not
directly modify the behaiour of ary particularagent,
but rather indirectly shapethe evolution of the aspec-
tualagentsasawhole.

Here, we presentan applicationof this theoreticalmodel,
basedon a neuralnetwork. Our problemis asfollows: how

canwe maximisetheflow of traffic througha roadnetwork?
Theinput layer of our neuralnetwork will processnforma-

tion from the morphologicalspaceof the aspectuabgents
andthen give an outputfigure which representshe global

stateof the network. This figure canthenbe usedto decide
ontheactionto betakento increasdraffic flow.

Neuronal ApproachesBasedModels

Analysis layer Neural Network
L ey e e e e e e e
NetViewer
e e N e I e e Y e s Y e Y Y s Y s
Morphological layer MorphObserver
L ey e e e e e e e
e e N e I e e Y e s Y e Y Y s Y s
Aspectual layer = Lights

A
Y

Cars

Figure2: Neuralnetwork basedegulation

Theregulationmodelusesanagent-basedescriptionwhich
is analysedy a neuralnetwork basedn multi-layerpercep-

Agent-BasedDescription

Thesimulatoris decomposeth threemain parts:

e The ervironmentis a bidimensionalgrid composedf

setof roadswhich have their own lengthandwidth and
wherecarsevolve;

The traffic lights managethe cars circulation at each
crossroadEachonefindsout theidentitiesof its neigh-
bours,it looksfor carswhich arrive atits crossroadnd
knows the direction that eachcar wantsto go. A co-
opefativelight modeis definedandproceedsortingcar
gueues.Thelongestqueueis first managedndthe as-
sociatedlight lets carsgo to their chooserdirectionif

spaceis available, elsethe second-longestjueueacts
andsoon...

Thecars canbein onethethreefollowing states.They
are in the statemoving whenthey have to go to one
crossroadgraphnode)to anotherif thereis no carin
front of it. Whena carreachests choosencrossroad
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Figure3: Regulationexperimentation

without having other carsin front of it, it changesdts
stateto atLight one. In this state,it sendsa messagé¢o
thelight telling which way it wantsto go. It thenwaits
until the light givesit permissionto move. If acarhas
otheronesin front of it, duringits move, it changests
stateto thewaiting one.

Moreover, the simulationmanagenput andoutputfluxesbe-
tweenthesimulatedown (asManhattan-styleoadgrid) and
the exterior.

Multi-Lay er Perceptron Regulation

The neuralnetwork usedfor the regulationis a multi-layer
perceptron. It is the analysislayer of the genericagent
organisatiordescribedpreviously (seefigure 2).

The network computesglobal variablesto reduce traffic
jams. Thethreestatesof its outputare: clear, busyandget-
ting blocked correspondindo no dangerof gridlock, slight
dangerand dangerof gridlock. So the retro-actionof this
analysislayer on the aspectualayer consistsin alteringthe
following variables:

e waitTime correspondsgto the delay betweensending
batcheof carsthroughthelights;

e carDispesion correspondso the authorizedcarsnum-
berableto comeinto thetown from the exterior.
Experimentations

We shaw in figure 3, two windows of the visual inter
facedesktopof the simulatorwhich representespectiely

a schematioview of the traffic and a traffic obsener curve.
This last information gives the numberof carswhich are
moving at eachstepof the simulation. In this example,the
regulationleadsto the preserationof the fluidity, the global
numberof moving carsis presered between100 and 150
units.

CONSTRAINED PATHS COMPUTATION
BASED ON ANT ALGORITHM

Ant algorithmsare a classof meta-heuristicshat canyield

nearoptimal solutionsto hardoptimizationproblems.They

maintain a population of agentsthat exhibit a coopera-
tive behaiiour (Langton,1987). For example,antsdeposit
phelomonesdn the ervironmentthat influenceotherswhich

tendto follow it. Suchan approachs robustandwell sup-
ports parameterchangesin the problem. Ant algorithms
hasbeenappliedsuccessfullyto variouscombinatorialop-

timization problemslike the Travelling SalesmarProblem
(Dorigo andGambardella1997),routingin networks (Caro
andDorigo, 1997),(White, 1997),for distributedsimulation
(Bertelleetal.,2002b)but alsoto DNA sequencingBertelle
et al., 2002a), graph partitioning (Kuntz et al., 1997) and
clustering(FaietaandLumer, 1994).

Dynamic Graph and Regulation Feed-back

The cartographyis representedby a weighted digraph
G = (V,€) whereV is a set of vertices representing
crossroadsor ary other significant information (school,
town hall ...) and€ = V x V is a setof directededges
e = (v;,v;). Thuseachsegmentof a streetthatis between
two adjacentserticesasdefinedpreviously is representetly



eitherone or two directededges. Two directededges,one
in eitherdirection, are usedif the streetis two-way, anda
singledirectededgeis usedif it is a one-way segment. The
edgeweightw;; betweertheverticesy; andv; is adynamic
factor which representshe time to crossthe edge (v;, v;)
and the traffic load which is computeby the regulation
systemasdescribedn thefollowing.

The regulation systemwhich actson waitTime variable,is
ableto give N;; the carsnumberon eachedgeof the graph
modellingtheroadtraffic. Takinginto accounsomephysical
characteristicef eachroadmodeledwith edge,a character
istic fludity-basedime, expressea@s:

Fi\ *

This characteristidime contritutesto the regulation feed-
back of the regulation systemon the dynamicgraphmod-
elling theroadtraffic. In fact, eachedgeweightis the sum
of anobsenedtime for crossingthe road,notedr;; andthe
characteristidluidity-basedime definedabove:

Wij =Tij + 6ij

Weightsevolve accordingo thetraffic andthegraphis there-
fore dynamicandwe have to find pathsin this graph. These
changesare oneof the major motivation for usingantalgo-
rithms Ant algorithmswhich arewell suitedfor thatkind of

taskasit hasbeenshavn in (Dorigo et al., 1996). This ap-
proachis implicitly distributed. This would not createmary

communicationsincethealgorithmonly usedocalinforma-
tionsandstoresresultsdirectly in the graph(thatis, directly

in the computingresourcegocal memory).

Algorithm

We searchin the graphsomepathsbetweentwo verticesvg
andwv,. Theresolutionmethodis distributed and basedon
auto-oganizationmechanisms.We continually releasenu-
merical antson the dynamicgraph,and allow themto find
routesbetweerpairsof vertices. The antsdepositnumerical
pheromonesn edges.Theamountf pheromoneleposited
is afunction of the lengthandcongestiorof paths.Ants are
attractedoy weightsof edgesandpheromonesTheevapora-
tion allowsto forgetbadpaths.Theantstendto convergeon
pathswhich arethefastest.

To beableto distributethe computationwe have dividedthe
algorithmin two partsandfor eachwe have a specifictime.

e The ervironment. It is representedy the dynamic
graph. Its major role is to managethe ant population,
evaporationphenomenomndsimulationof weightson
the edges. We storealsoin the vertex v,, the shortest
pathwhichcomesromvg, theminimalglobalcosti¥y,,
of the pathfrom vy to v,,. Dueto the dynamicchange
of weightsthe durationof the shortespathmaychange

whenanotherntcoversthe pathcrossinghe samever-
ticesandwe notety,, theinstantwheretheanthasfound
thesamepath. For agivenstep,we have:

teny = discrete tine of the environnment
BEGIN

birth of ants on the vertex wvg

pher onone evaporation (see (2))

wei ghts update

IF ton € tens /1 This depends on path |ength

/1 No ants have used the path since

/1 along time

THEN Wy, = +o0
ENDIF
tenv = temy + 1

END

e Theants.Antstry to gofromthevertex vg to theanother
vertex v,. Ants managetheir displacementaccording
to timesandpheromonesThey alsodrop pheromones
on edges.Threestatesarepossiblefor anantloking for
food, reachingthefinal vertex v,, , andcomingbackto
the source For oneantlocatedoni we have:

tant = discrete tine for the ant
vertex = ¢
ant _state € {search,arrived, go_back}
BEGIN
IF ant _state == search
THEN
/1 The ant nust choose an adjacent vertex to ¢
V; = set of the adjacent vertices of 7 which
have not been traversed yet by the ant
FORALL j € V; DO
Conpute the probability p;; (see (1))
that the ant chooses to hop from
the vertex i to j
ENDFOR
Sel ect the next vertex wvg
according to the probability p;;
Wait during the time wip —1
vertex = v // Mwve to k

IF v == v,
THEN ant_state = arrived
ENDIF

ENDIF

IF ant_state == arrived

THEN

update if necessary shortest path
and tines ton
ant_state = go_back
ENDIF
IF ant_state == go_back
THEN
pher onone deposit on path
used by the ant (see (4))
death of the ant
ENDIF
tant = tant * 1
END

Let 7;; be the amountof pheromonerail depositedon the
edgeconnecting andj, w;; the weight of the edgeswhich
depend®nthetime of thetraffic flow to connecthelocation



i andyj, it is adynamicvariable. The probability thatan ant
whenit is locatedoni choosgj is:

1 B
i) = (a5) (1)

S (ra)® (wlk)B

kEV;

Where); is the setof adjacentverticesof ¢ which have not
beentraversedyet by the ant. The amountof pheromone
7;; ontheedge(i, j) is modifiedby the ervironmentandby
theants. The ervironmentregularly updateghis pheromone
quantityusinganevaporatiorrate,noted(1 — p):

e = pritd )

where0 < p < 1 and7j/* and7]}*" arerespectiely the
pheromonequantity before and after the update. An ant
which hasfound a path betweenthe two verticesvy and
v, andso comebackto startvertex, modify the pheromone
quantityby reinforcementate,notedAr:

K
Wij

AT = 3)
where K is a constantand W;; the global costof the path
betweeni andj.

T = Tiojld + AT 4)

Results

We showv anexampleof the algorithmexecution,basedon a
simpleurbanrepresentationvith a ring road (seefigure 4).
The first graphshaws the initial situation, the ring roadis
the fastestway thenwe jam it, soa new pathis detectedy
theants. The secondgraphshaws the shortespathobtained
which takesthering road, the lastoneis the solutionwhen
thering roadis jamed.In this example,at eachervironment
time step10 antsarereleasedp = 3, 4 =1, p = 0.9 and
K=2.

CONCLUSION

We aredevelopingan architectureof both a regulation sys-
temandadecisionsupportsystenbasednadynamicgraph.
Ant algorithmsareusedandwell suitedfor adaptive aspects
andanytime approachesf dynamictraffic flow. Neuralnet-
worksareusedandwell suitedfor traffic flow regulation.We
actually work on future developmentconcerningmanage-
mentof heterogeneousformationsflows from ary kind of
sourcegqsatelliteswebcamssensorsandmultimodalinter-
facesfor the differentusers.We aresearchingo extractthe
mostimportantandurgentinformationsusingorganizations
of cooperatres/antagonistagents.Multi-agentsystemsare
adaptedo find emegentevolutionarysolutionsin dynamic
problems.
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Figure4: Searchof a shortespathon a simpledynamicurbanconfiguration




