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ABSTRACT

Decisionsupportsystemfor roadtraffic managementcanbe
usedfor freight transport,peopletransportbut alsofor site
evacuation.Wedealwith two aspectsof thedecisionsupport
systemin a sameglobalarchitecture:onefor traffic regula-
tion to avoid jam andthe otherfor roadusersto choosethe
shortestpathin time betweentwo points.Thesetwo aspects
interact. The cartographyis representedby a weighteddi-
graph. The weightsevolve accordingto the traffic and the
graphis thereforedynamic. The regulationsystemis based
on a neuralnetwork. The shortestpath is basedon an ant
algorithmwell suitedfor dynamicenvironments.

GLOBAL ARCHITECTURE FOR ROAD
TRAFFIC MAN AGEMENT

Thetransportdevelopmentmustfaceup to many constraints
like: substructuresrealizationandexpansionlimitation due
to the available spaceand the costs,reductionof the loud
and atmosphericpollution, deregulation and concurrency
betweenthemodeof transportandsoon. So,it is necessary
to find solutionsto manageroadtraffic. Two aspectscanbe
considered.Thefirst oneis aboutDecisionSupportSystem
(DSS) to help and inform users. The secondone is about
regulation systembasedon control amenagement(Virtual
MessageSigns(VMS), traffic lights, ...).

We proposea global architecturebasedon two main parts
(seefigure1):� Therealworld which is split in threeelements:

– thetraffic which contains,in onehand,all mobile
elements(cars,pedestrians,...) describedwith dif-
ferentlevelsof autonomousbehaviour and,in the
other hand,spatio-temporalorganizationswhich
arepredictable(schoolouts, ...) or not (jam, ac-
cident,...) ;

– theenvironmentwhichcontainsall theroadinfras-
tructureandlogisticplanning;

– the control systemwhich containssensors(web-
cams, data traffic magnetic sensors,...) and
effectors(VMS, traffic lights, ...).

� Themodelwhich is split in thefollowing elements:

– informationcollectionandprocessingin orderto
usethemon thesolvinglevel;

– adynamicweighteddigraphrepresentingthesein-
formationsandthetraffic flow;

– a regulationsystembasedon this graphandman-
agingthecontrolsystem;

– aDSSwhichusethedynamicgraphandtheregu-
lationcontrol.A multimodalinterfaceinformsand
helpsdifferentuserswith respectto their profiles.

The informationupdateand its adaptive treatmentgive the
dynamicaspectof theglobalarchitectureasdescribedin fig-
ure1. So, it is typically a complex systemmodelincluding
retro-actionphenomena.In thispaperwedeveloptwo points
of this architecture:the regulationsystembasedon multi-
layerperceptronwith backpropagationalgorithmandthede-
cisionsupportsystemwhichsuggestsshortestpathsobtained
from a dynamicgraph.

REGULATION MODELLING

The model for road traffic regulation usesan agent-based
representationfor roadtraffic anda neuronalmodelfor the
regulation.Thisstudy(Foote,2002)presentedin thefollow-
ing will look at traffic flow on a Manhattan-styleroadgrid.
At eachcrossroad,thereis a traffic lights systemdeciding
which carsaregoing to cross. Carsenterthe grid from the
outsideanddecidewhich directionthey wish to useat each
crossroad.We usetheMadkit package(GutknechtandFer-
ber, 1997)to managethe agentworld. The neuralnetwork
is a multi-layerperceptronimplementinga backpropagation
algorithm.
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Figure1: Globalarchitecture

Controlling Multi-Agent System

Thegenericagentorganizationusedin this work is basedon
a theoreticalstudyof A. Cardon(Lesageet al., 1999). He
describeshow amulti-agentsystemcanbedividedinto three
typesof agents:� AspectualAgentsarethebasicagentsthatrepresentthe

target population. In our case,they representcarsand
traffic lights in a town;� Morphological Agentsdealwith aspectualagentsmea-
surements.They collectonly someinformationswhich
lead to describeevolutive and adaptive organizational
aspects.It is a kind of projectionof all agentcharacter-
istics ontoa smallerdimensionalspace.In our case,a
morphologicalagentplaysa statisticcollectionservice,
takinginto accountfor example,carspositionandinfor-
mationabouttheir displacements.� AnalyticalAgentsaresomerulersof our agentpopula-
tion, looking at the statisticsprovidedby the morphol-
ogyagents,andthenactingonthemtocontroltheglobal
behaviour of the system.The analyticalagentsdo not
directly modify the behaviour of any particularagent,
but rather, indirectly shapethe evolution of the aspec-
tualagentsasa whole.

Here, we presentan applicationof this theoreticalmodel,
basedon a neuralnetwork. Our problemis asfollows: how
canwe maximisetheflow of traffic througha roadnetwork?
The input layerof our neuralnetwork will processinforma-
tion from the morphologicalspaceof the aspectualagents
and thengive an outputfigure which representsthe global
stateof thenetwork. This figurecanthenbeusedto decide
on theactionto betakento increasetraffic flow.

Neuronal ApproachesBasedModels
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Figure2: Neuralnetwork basedregulation

Theregulationmodelusesanagent-baseddescriptionwhich
is analysedby aneuralnetwork basedonmulti-layerpercep-
tron.

Agent-BasedDescription

Thesimulatoris decomposedin threemainparts:� The environmentis a bidimensionalgrid composedof
setof roadswhich have their own lengthandwidth and
wherecarsevolve;� The traffic lights managethe carscirculation at each
crossroad.Eachonefindsout theidentitiesof its neigh-
bours,it looksfor carswhich arriveat its crossroadand
knows the direction that eachcar wantsto go. A co-
operativelight modeis definedandproceedsortingcar
queues.Thelongestqueueis first managedandtheas-
sociatedlight lets carsgo to their choosendirection if
spaceis available, else the second-longestqueueacts
andsoon ...� Thecars canbein onethethreefollowing states.They
are in the statemoving when they have to go to one
crossroad(graphnode)to anotherif thereis no car in
front of it. Whena car reachesits choosencrossroad



Figure3: Regulationexperimentation

without having other carsin front of it, it changesits
stateto atLight one. In this state,it sendsa messageto
thelight telling which way it wantsto go. It thenwaits
until the light givesit permissionto move. If a carhas
otheronesin front of it, during its move, it changesits
stateto thewaiting one.

Moreover, thesimulationmanageinputandoutputfluxesbe-
tweenthesimulatedtown (asManhattan-styleroadgrid) and
theexterior.

Multi-Lay er Perceptron Regulation

The neuralnetwork usedfor the regulationis a multi-layer
perceptron. It is the analysislayer of the generic agent
organisationdescribedpreviously (seefigure2).

The network computesglobal variablesto reducetraffic
jams. Thethreestatesof its outputare: clear, busyandget-
ting blocked correspondingto no dangerof gridlock, slight
dangeranddangerof gridlock. So the retro-actionof this
analysislayer on the aspectuallayer consistsin alteringthe
following variables:� waitTime correspondsto the delay betweensending

batchesof carsthroughthelights;� carDispersioncorrespondsto theauthorizedcarsnum-
berableto comeinto thetown from theexterior.

Experimentations

We show in figure 3, two windows of the visual inter-
facedesktopof the simulatorwhich representrespectively

a schematicview of the traffic anda traffic observer curve.
This last information gives the numberof cars which are
moving at eachstepof the simulation. In this example,the
regulationleadsto thepreservationof thefluidity, theglobal
numberof moving carsis preserved between100 and150
units.

CONSTRAINED PATHS COMPUTATION
BASED ON ANT ALGORITHM

Ant algorithmsarea classof meta-heuristicsthat canyield
near-optimalsolutionsto hardoptimizationproblems.They
maintain a population of agentsthat exhibit a coopera-
tive behaviour (Langton,1987). For example,antsdeposit
pheromonesin the environmentthat influenceotherswhich
tendto follow it. Suchan approachis robustandwell sup-
ports parameterchangesin the problem. Ant algorithms
hasbeenappliedsuccessfullyto variouscombinatorialop-
timization problemslike the Travelling SalesmanProblem
(Dorigo andGambardella,1997),routing in networks(Caro
andDorigo,1997),(White,1997),for distributedsimulation
(Bertelleetal.,2002b)but alsoto DNA sequencing(Bertelle
et al., 2002a),graphpartitioning (Kuntz et al., 1997) and
clustering(FaietaandLumer, 1994).

Dynamic Graph and Regulation Feed-back

The cartography is representedby a weighted digraph� � �����	��

where

�
is a set of vertices representing

crossroadsor any other significant information (school,
town hall . . . ) and

���
�����
is a set of directededges� �������	������


. Thuseachsegmentof a streetthat is between
two adjacentverticesasdefinedpreviously is representedby



eitheroneor two directededges. Two directededges,one
in eitherdirection,are usedif the streetis two-way, anda
singledirectededgeis usedif it is a one-way segment.The
edgeweight � ��� betweenthevertices

���
and

���
is a dynamic

factor which representsthe time to crossthe edge
�������	����


and the traffic load which is computeby the regulation
system,asdescribedin thefollowing.

The regulation systemwhich actson waitTime variable, is
ableto give � ��� the carsnumberon eachedgeof the graph
modellingtheroadtraffic. Takingintoaccountsomephysical
characteristicsof eachroadmodeledwith edge,a character-
istic fludity-basedtime,expressedas:

� �����! �" ���� �#�%$'&)(
This characteristictime contributesto the regulation feed-
back of the regulation systemon the dynamicgraphmod-
elling the roadtraffic. In fact, eachedgeweight is the sum
of anobservedtime for crossingthe road,noted * ��� andthe
characteristicfluidity-basedtime definedabove:

� �#��� * ���,+ � �#�
Weightsevolveaccordingto thetraffic andthegraphis there-
fore dynamicandwe have to find pathsin this graph.These
changesareoneof themajormotivation for usingantalgo-
rithmsAnt algorithmswhich arewell suitedfor thatkind of
taskasit hasbeenshown in (Dorigo et al., 1996). This ap-
proachis implicitly distributed.This would not createmany
communicationssincethealgorithmonly useslocal informa-
tionsandstoresresultsdirectly in thegraph(that is, directly
in thecomputingresourceslocal memory).

Algorithm

We searchin thegraphsomepathsbetweentwo vertices
�.-

and
��/

. The resolutionmethodis distributedandbasedon
auto-organizationmechanisms.We continually releasenu-
mericalantson the dynamicgraph,andallow themto find
routesbetweenpairsof vertices.Theantsdepositnumerical
pheromonesonedges.Theamountsof pheromonedeposited
is a functionof the lengthandcongestionof paths.Ants are
attractedby weightsof edgesandpheromones.Theevapora-
tion allows to forgetbadpaths.Theantstendto convergeon
pathswhicharethefastest.
To beableto distributethecomputation,wehavedividedthe
algorithmin two partsandfor eachwe haveaspecifictime.� The environment. It is representedby the dynamic

graph. Its major role is to managethe ant population,
evaporationphenomenonandsimulationof weightson
the edges.We storealso in the vertex

��/
the shortest

pathwhichcomesfrom
� -

, theminimalglobalcost 0 - /
of the pathfrom

� -
to
��/

. Due to the dynamicchange
of weightsthedurationof theshortestpathmaychange

whenanotherantcoversthepathcrossingthesamever-
ticesandwenote 1 - / theinstantwheretheanthasfound
thesamepath.For agivenstep,wehave:2�3�465

= discrete time of the environment

BEGIN
birth of ants on the vertex 798
pheromone evaporation (see (2))

weights update

IF
2 8 4;:<2�3�4=5

// This depends on path length

// No ants have used the path since

// a long time

THEN > 8 4@?BADC
ENDIF2 3�4=5

=
2 3�4=5

+ 1

END

� Theants.Antstry to gofromthevertex
�.-

to theanother
vertex

� /
. Ants managetheir displacementsaccording

to timesandpheromones.They alsodroppheromones
on edges.Threestatesarepossiblefor anantloking for
food, reachingthefinal vertex

� /
, andcomingbackto

thesource.For oneantlocatedon E wehave :2�FG46H
= discrete time for the ant

vertex =
�

ant_state I;J9KGLGMON9PRQTSUMVN9N � 7OLGW6S�XVY _ Z[MOPR\=]
BEGIN

IF ant_state == K�LGMVN^PRQ
THEN
//The ant must choose an adjacent vertex to

�_T`
= set of the adjacent vertices of

�
which

have not been traversed yet by the ant

FORALL
� I _a` DO

Compute the probability b `#c (see (1))

that the ant chooses to hop from

the vertex
�
to
�

ENDFOR

Select the next vertex 79d
according to the probability b `#c

Wait during the time e ` d &'(vertex = 79d // Move to \
IF 79d == 7 4

THEN ant_state = MVN9N � 7OLGW
ENDIF

ENDIF
IF ant_state == MON	N � 7OL�W

THEN
update if necessary shortest path

and times
2 8 4

ant_state = XOY _ Z[MOPR\
ENDIF
IF ant_state == XOY _ Z[MOPR\

THEN
pheromone deposit on path

used by the ant (see (4))

death of the ant

ENDIF2�F�4=H
=
2�F�4=H

+ 1

END

Let f ��� be the amountof pheromonetrail depositedon the
edgeconnectingi andj, � ��� the weight of the edgeswhich
dependsonthetimeof thetraffic flow to connectthelocation



E and g , it is a dynamicvariable.Theprobability thatanant
whenit is locatedon E chooseg is:

h � E � g 
i� � f �#�j
�kl�nm (e `#cToqpr\�I _ ` � f � \ 
 k  !s� � \ $ p
(1)

Where
� �

is thesetof adjacentverticesof E which have not
beentraversedyet by the ant. The amountof pheromonef �#� on theedge

� E � g 
 is modifiedby theenvironmentandby
theants.Theenvironmentregularly updatesthis pheromone
quantityusinganevaporationrate,noted

� s@tvu 
 :
f / LGe�#� � u f Y�wxW�#� (2)

where y{z u z s and f Y�wxW�#� and f / LRe�#�
are respectively the

pheromonequantity before and after the update. An ant
which has found a path betweenthe two vertices

� -
and��/

andsocomebackto startvertex, modify thepheromone
quantityby reinforcementrate,noted |}f :

|~f � �0 �#� (3)

where � is a constantand 0 ��� the global costof the path
betweenE andg .

f / LRe�#� � f Y�wxW��� + |~f (4)

Results

We show anexampleof thealgorithmexecution,basedon a
simpleurbanrepresentationwith a ring road(seefigure 4).
The first graphshows the initial situation, the ring road is
the fastestway thenwe jam it, soa new pathis detectedby
theants.Thesecondgraphshows theshortestpathobtained
which takesthe ring road,the last oneis the solutionwhen
thering roadis jamed.In this example,at eachenvironment
time step10 antsarereleased,� ���

, � � s , u � y�� � and� �{�
.

CONCLUSION

We aredevelopingan architectureof both a regulationsys-
temandadecisionsupportsystembasedonadynamicgraph.
Ant algorithmsareusedandwell suitedfor adaptiveaspects
andanytime approachesof dynamictraffic flow. Neuralnet-
worksareusedandwell suitedfor traffic flow regulation.We
actually work on future developmentconcerningmanage-
mentof heterogeneousinformationsflows from any kind of
sources(satellites,webcams,sensors)andmultimodalinter-
facesfor thedifferentusers.We aresearchingto extract the
mostimportantandurgentinformationsusingorganizations
of cooperatives/antagonistsagents.Multi-agentsystemsare
adaptedto find emergentevolutionarysolutionsin dynamic
problems.
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