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Abstract. A distributed application may be considered as a set of interacting entities
continuously evolving. Such application can be modeled as a graph with one-to-one
mappings between vertices and entities and between edges and communications. Per-
formances depend directly on a good load balancing of the entities between available
computing devices and on the minimization of the impact of the communications
between them. However, both objectives are contradictory and good performances
are achieved if and only if a good tradeoff is found. Our method for finding such a
tradeoff is new and based on colored ant colonies. Each computing resource is associ-
ated to one ant colony characterized by a color, allowing an implicit consideration of
the load balancing constraint. Then, using colored pheromones, ants are just seeking
for communicating structures. The method operates on graphs which structural and
numerical parameters may change dynamically during the execution.
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1 Introduction

In distributed application, often a very large number of entities are used to represent
a complex system. The dynamics of such systems discourages a static distribution
made upstream, before application execution. As the system evolves communications
between entities change. Communications and entities may appear or disappear, cre-
ating organizations. As a consequence, an entity location that was correct at the be-
ginning, can severely impact performance two hundred time steps after. Therefore we
need an anytime distribution method that advices the application on better locations
for each entity preserving load-balancing between computing resources, but ensur-
ing that entities that communicate heavily are close together (ideally on the same
processing resource).

In this paper, a method based on the Ant System[6] is described that advises on a pos-
sible better location of some entities according to the tradeoff between load balancing
and minimization of communications overhead.

The Paper is organized as follows. Section 2 provides some background about ant
algorithms and some of their applications. Section 3 details the graph representing the
distributed application. Operating on this graph, our colored ant system is described
in section 4. Finally, our implementation is discussed in section 5 and illustrated
by some experiments, before we conclude with further expected improvements and
perspectives for this system.

2 Ant Algorithms

Ant algorithms are a class of meta-heuristics based on a population of agents exhibit-
ing a cooperative behaviour[10]. Ants continuously forage their territories to find
food[8] visiting paths, creating bridges, constructing nests, etc.



This form of self-organization appears from interactions that can be either direct
(e.g. mandibular, visual) or indirect. Indirect communications arise from individu-
als changing the environment and other responding to these changes: this is called
stigmergy.

For example, ants perform such indirect communications using chemical signals
calledpheromonesThe larger the quantity of pheromones on a path, the larger the
number of ants visiting this path. As pheromones evaporate, long paths tend to have
less pheromone than short ones, and therefore are less used than others (binary bridge
experiment).

Such an approach is robust and well supports parameter changes in the problem.
Besides, it is intrinsically distributed and scalable. It uses only local informations
(required for a continuously changing environment), and find near-optimal solutions.
Ant algorithms has been applied successfully to various combinatorial optimization
problems like the Travelling Salesman Problem[5] or routing in networks[3,11], but
also to DNA sequencing[1], graph partitioning[9], coloring[4] and clustering[7].

3 Dynamic Communication Graph

3.1 Model

We model the application by a gragh= (V, £) whereV is a set of vertices repre-
senting entities of the application afid= V x V is a set of edges = (v;, v;) repre-
senting communications between entities represented by vestiegslv;. Commu-
nications direction being without effect on the ant algorithm, edges are undirected.
Edges are labeled by weights representing communication volumes (and possibly
more attributes). Each vertex is assigned to an initial processing resource at start. No
assumption is made about this initial mapping.

We distinguish two different kinds of communications. On the one hand communi-
cations occurring between entities located on the same computing resource are sup-
posed negligible. On the other hand, communications between entities located on
distinct computing devices, calleattual communicationsconstitute the source of

the communication overhead. Our goal is to reduce the impact of actual communi-
cations by identifying clusters of highly communicating entities in order to map all
entities belonging to one cluster on the same computing resource. Of course, one triv-
ial solution is obtained by mapping all entities on only one computing resource. In
order to avoid this, we use several colored ant colonies that produce colored clusters,
each color corresponding to one computing resource.

3.2 Dealing With a Dynamic Environment

As said above, the graph represents the application as it runs, it is therefore dynamic
at several levels:

e weights change continuously;

e edges, that is communications, can appear and disappear at any time;

e vertices, that is entities, can appear and disappear at any time.

e processing resources can appear or disappear and change power at any time.
These changes in both topology and valuation are one of the major motivation for
using ant algorithms.

Indeed, a monotonic approach is one way to achieve clustering on a graph. It consists
in regularly applying a computation on a frozen copy of the dynamic graph, then
trying to use this information, though the real graph is still evolving. This approach

is problematic: the graph can have changed during computation and results may not
be usable any more, creating discrepancies between the real application state and
calculated migration hints. Furthermore, it is not incremental, each time the algorithm
is performed anew.

1 PP. Grassé, in Insectes Sociaux, 6, (1959), p. 41-80, introduced this notion to describe termite
building activity.



Another way is to use an anytime algorithm. The dynamic graph is considered as
a changing environment for computing entities that travel on the graph, taking into
account the changes as they appear, and storing the solution directly in the graph,
as an effect of their evolution. Ant algorithms are well suited for that task as it has
been shown in[6]. Moreover this approach is implicitly distributed and results can be
stored directly in the graph.

4 Colored Ant System

As shown above, we model large scale distributed applications by a dynamic graph
G = (V,&). The ant algorithm is used to detect clusters of highly communicating
entities. To solve load balancing problems we introdoored antsand colored
pheromoneshat correspond to available processing resources. To suit our algorithm
we extend our graph definition:

Definition 1 (Dynamic Communication Colored Graph).A dynamic communica-
tion colored graph is a weighted undirected graph= (V, £, C) such that:
e C is a set ofp colors wherep is the number of processing resources of the dis-
tributed system.
e Vs the set of vertices. Each vertex has a color belongirg to
e &isthe setof edges. Each edge is labelled with a weight. A weightv) € N*
associated with an edge:,v) € V x V corresponds to the importance of
communications between the couple of entities corresponding to vertaed
V.

The figure 1 shows an example of a dynamic communication colored graph at sev-
eral steps of its evolution. The proposed method changes the color of vertices if this
change can improve communications or processing resource load. The algorithm tries
to color vertices of highly communicating clusters with the same colors. Therefore a
vertex may change color several times, depending on the variations of data exchange
between entities.

4.1 The Colored Ant Algorithm

Our algorithm is inspired by the Ant System[6]. We consider a dynamic communica-
tion colored graplz = (V, £,C).

e Each processing resource is assigned to a color. Each vertex gets its initial color
from the processing resource where it appears. For each processing resource,
ants are allocated as explained in section 4.3.

e The algorithm is based on an iterative process. Betweenstepandt, each ant
crosses one edge and reaches a new vertex. During its move, it drops pheromone
of its color on the crossed edge. Moreover, each ant has the ability to remember
one or more vertices it comes from.

We define the following elements:
e The quantity of pheromone of colerdropped by one ant on the edge
(u,v), between the steps— 1 andt is notedA'" (u, v, c).
e The quantity of pheromone of colerdropped by the ants when they cross
edge(u, v) between steps— 1 andt is noted:

A9 (u,v,¢) = > AP (u,v, ¢) (1)
zEF

e The total quantity of pheromone of all colors dropped by ants on édge
between steps— 1 andt is noted:

A9 (u,v) =" A9 (u,v,¢) 2)

ceC



Fig. 1. Example of a dynamic communication graph at five stages of its evolution

o If AW (u,v) # 0, the rate of pheromone of coleron the edge(u, v)
between the stepgs— 1 andt is noted

A (y, v, ¢
K (u,v) = A(tg(u v)) )

This rate verifies< " (u, v) € [0, 1].
e The current quantity of pheromone of colopresent on the edde:, v) at step
¢ is denoted byr)(u, v, ¢). Its initial value (whent = 0) is 0 and then is
computed following the recurrent equation:

Due to evaporation, we define the persistence of the pheromones on an edge:
p€[0,1].

e Atthis stage of the algorithm, we have computed the current quantity of pheromone,
T(t>(u, v, ¢) classically, as a reinforcement factor for clustering formation based
on colored paths. We need now to take into account the load balancing in this
auto-organization process. For this purpose, we need to balance this reinforce-
ment factor WhithKc(t>(u, v), the relative importance of considered color with
regard to all other colors. This corrected reinforcement factor is noted:

w P (u,v,¢) = K (u,0)7 P (u, v, ¢)



Unfortunaly, this corrected reinforcement factor can generate an unstable pro-
cess. So we prefer to use a delay-based relative importance of considered color
with regard to all other colors. For a time range NT, we define:

t

KO (0) = 3 K (u,v), (@)

s=t—q

According to this definition, we compute the new corrected reinforcement fac-
tor :
29 (w,v,¢) = K (u,0)r (u, 0, ¢) ®)
e Let us definep(u, vk, ¢) the probability for one arbitrary ant of coler on the

vertexu, to walk over the edgéu, v, ) whose weight is noted (u, vy).
e At the initial step(t = 0),

w(u, vg)

Uk, C) = ———— 6
p(u, vk, €) S w(u.o) (6)
VEVy
o After the initial step(t # 0),
_ (29 (u, 0, 0))* (w(u, v))”
P ) = S 0 00,0 (0, 00) "
vq €V

WhereV, is the set of vertices adjacent#o

The relative values oft and 3 give the weighting between pheromone factor
and weights. We will see later that this weighting is a major factor in the way the
algorithm achieves its goals.

The choice of the next edge crossed by an ant depends on the previous proba-
bilities. However, to avoid the ant moves to oscillate between two vertices, we
introduce in the formula a penalisation factpe [0, 1]. GivenWV, the set of the

last vertices visited ant with [W,| < M, the new probability formula for the
specific ante is:

(2 (u, v, €))* (w(u, 1)) 1

Pz (’U,, Uk, C) = a (8)
Z (‘Q(t) (U, Vg, C)) (’UJ(U, ’UQ))ﬁn%q
vg€Vy
Where
_f1ifog ¢ Wy
ma={ ok E ©
e The color of a vertex, noteds (u) is obtained from the main color of its incident
arcs:
— (®)
€(u) = arg max ; 7 (u, v, ¢) (10)

4.2 Solution Quality

Itis necessary to have a measure of the quality of the solution, to know if we improve
the obtained solution. There are two aspects to take into account :

e The global costs of communications;

e The load-balancing of the application.
They are antagonist. So, in order to evaluate our solution we first defined two quality
criterionsr; andrz. The first criterionr identifies between two solutions which has
proportionally less actual communications. Thus we compute actual communication
costs, noted:, by summing actual communications on the graph (between entities
located on distinct processing resources). Then we compute arfaiimmong the
total volume of communications, notadon the graph and we have:

ri=a/s



The morer; is close ta0, the more actual communications are low, as expected. The
second criteriorre considers the load-balancing. For each celowe havev. the
number of vertices having colerandp. the power of processing resource affected
to ¢ as defined in section 4.3. Then we have:

minkC

ro = where K:{&;CEC}
DPe

maxkC

The morer; is close tol, the better the load-balancing. For example, we obtain on
the two graphs (Figure ) = 0.15, ro = 1.0 for ¢ = 0 (first graph) and;, = 0.88,

ro = 1.0 for ¢ = 300 (last graph).

These criterions are used to compare different solutions obtained during the computa-
tion, essentially to verify if we improve the solution during the steps. These criterions,
enable us to store the best solution obtained so far.

We use also these criterions to compare communication graphs where clusters are
already identified. For these graphs colors allocations are randomly shuffled. Then
the algorithm tries to find the original allocation on the graph as a solution, or a
solution where the criterions are closest.

4.3 Dynamic Aspects

As described above, the algorithm does not specify how it handles dynamic aspects
of the graph. We indeed also need to define what happens when:

e an edge appears or disappears;

e avertex appears or disappears;

e a processing resource appears or disappears.

We need to maintain a given level of population for the algorithm to work. When
there are too few ants, evaporation makes pheromones disappear and the algorithm
becomes a variant of a greedy algorithm. If there are many ants, pheromones take a
too large part and the system efficiency decreases.

Furthermore, the population must take into account the number of entities to dis-
tribute and the number of processing resources. A graph with twenty entities will not
need as many ants as a graph with three thousand entities.

Therefore ant allocation strategy is:

e When an entity appears, we allocaloor(N xp.)*|C| ants, withV an integer
constant greater thahandp. a numberc R™ representing the power of the
processing resource characterized by coldie place these ants on the vertex
corresponding te. This ensures that each processing resource has a number of
ants dependant of its power and that the number of ants is related to the number
of entities. Colors are assigned uniformly to this set of ants.

¢ In the same way, when an entity disappears, we remove randfiody (IV
pe) * |C| ants, not necessarily on the vertex that disappear. Remaining ants that
are on disappearing vertex and that are not removed die and hatch on a new
vertex as explained in section 4.4.

e When an edge disappears we mererly do nothing. Indeed this only affects ants
on the possible path they can follow. Identically, when an edge appears, we do
nothing, ants can potentially use it immediately.

e when a processing resource of cator C appears, we allocat¥ * p. x |V| ants
of the new colok, that we spread over the graph uniformly.

e When the processing resource disappears, all ants of its color simply die.

e When the power of the processing resource of colohanges between steps
t — 1 andt (because it is more or less available) we makg,:s ants die or
hatch (according to the sign af..:s). Let 7(C) be the set of ants of coldt,

we compute the differencelqn:s = |F(C|) — (N * pt) % V).

4.4 Further Improvements

Furthermore, the algorithm as stated above has several problems, mostly due to dy-
namics, but not only, we need to improve what happen if:



e the graph becomes a not connected graph?
e we find local minima, ants running across some preferred edges and not others,
stigmergy increasing the process over and over?

To tackle these problems, we add some death and hatching mechanisms. Again, we
want to maintain a stable level of population to avoid problems cited in section 4.3.
Therefore, we choosed to make one hatch for one death. The goal is to perturb the ants
repartition that is generating small stable clusters which are the result of local minima.
Furthermore this procedure makes senses since our algorithm runs continuously not
to find a static solution as the standard Ant System, but to provide anytime solutions to
a continuously changing environment. In order to do that we try to determine when
an ant is at the wrong location and unable to leave it by itself. If we detect such a
case, we kill the ant and make a new one hatch at a selected position (always to keep
population constant).
The algorithm is modified to detect such cases.

1. We define the following elements:

o 7 (u, ¢) is the quantity of pheromone of colerdropped on all edges
connected to vertex:

7 (u,c) = Z 79 (u, vg, €) (11)

vq EVy

o 7 (u) is the quantity of pheromone of all colors dropped on all edges
connected to vertex:

) =37 (u,c) (12)

ceC

e o (u) €[0,1]:
7® (u, ¢)

Wc(u = 77_@)(“) (13)

the relative importance of pheromones of cala@ompared to pheromones
of all colors on edges leading to vertex

2. Then, at each step, before the ant chooses an arc to cross (equations 6 and 8), we
must choose weither the ant will die or not. We determine this using a threshold
parametet) € [0, 1] for an ant of color on vertexu:

o if p.(u) < ¢ we make the ant die and create a new ant choosing a new
location for it as follows: we select randomly a 3&t of n vertices. Let
|F(v)| be the number of ants on vertexThen we select a vertexin V),
using:

u = arg min (|7 (v)]) (14)

and make the new ant hatch on it.
e else, we proceed as specified in the original algorithm choosing a new edge
using probabilities (equation 6 and following).

This mechanism brings several advantages. First this eliminate problems tied to dis-
connected graphs, as shown in figure 2. In this figure, the graph oscillates between
a configuration where it is made of four non connected subgraphs (where ants could
otherwise stay blocked), and a grid configuration. The first stage shows the initial
configuration. The second is taken 30 steps after, clusters have formed with a very
high level of death and hatching. At the third stage, the graph changes and becomes
a grid. twenty steps after clusters reappear according to communication in the grid.
In the fourth stage, as the graph changes anew, some parts of the grid clusters tend to
remain.

This mechanism, while keeping population constant, allows to avoid local minima,
small stable clusters inside others.

Finally, this procedure does not need a global system to observe the distributed appli-
cation, all can be done locally (since hatching is random).



Fig. 2. Example of a disconnected dynamic graph

5 Implementation and Experimentation

Here are several experiments we made with two dynamic graphs. For these tests, we
used program that simulate the application by creating a graph and then applying
events to it. Events are the appearance or disappearance of an edge, a vertex or a
processing resource, but also functions that change weights on edges.

In the following figures, the graph representation is as follows. Vertices are rectan-
gles. Edges are shown with a pie chart in the middle that indicates relative levels of
pheromones with the maximum pheromone level numbered. Vertices are labeled by
their name at the top with under at the left the total number of ants they host and at
the right a pie chart indicating the relative number of ants of each color present on
this vertex.

The first experiment, already shown in figure 1 and detailed in figure 3 is a small
graph (18 vertices), where three main communication clusters appear. These clusters
are linked at the center by low communication edges that appear and disappear. In-
side the clusters some edges also appear and disappear. For this experiment we used
parameters: = 1.0, 3 = 4.0, p = 0.8 ¢ = 0.3, = 0.0001, N = 10 and|W,| = 4

vertices. These parameters will be the same for all other experiments excepted when
noted.

The second experiment used a bigger graph (32 vertices) that continuously switch
between three configurations. Figure 4 shows two views for each snapshot of the
graph. The first one, in the first column, shows all informations as explained above,
the second only shows cluster relevant informations and may be easier to follow. Six
snapshots of the graph are presented and show that clusters remains stable across
reconfigurations.



6 Conclusion

In this paper we have presented a variant of the Ant System called Colored Ant Sys-
tem that offers advices for entity migration in a distributed system taking care of the
load and communication balancing. We have described a base colored ant algorithm,
observed its behaviour with dynamic graphs and provided methods to handle them.
We have shown several experiments with different graphs of this system.

We develop actually an heuristic layer allowing to handle some constraints tied to
the application, like entities that cannot migrate (e.g. bound to a database), but also
informations peculiar to the application.

This work takes place within the context of aquatic ecosystem models[2], where we
are faced to a very large number of heterogeneous auto-organizing entities, from flu-
ids representatives to living creatures presenting a peculiar behaviour.
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Fig. 4. Experiment 2




