Complex system simulations can often be represented by an evolving graph which evolves with a one-to-one mapping between vertices and entities and between edges and communications. Performances depend directly on a good load balancing of the entities between available computing devices and on the minimization of the impact of the communications between them. We use competing colonies of numerical ants, each depositing distinctly colored pheromones, to find clusters of highly communicating entities. Ants are attracted by communications and their own colored pheromones, while repulsion interactions between colonies allow to preserve a good distribution.