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Abstract
Recent events have shown that our agglomerations are vulnerable in

front of emergency situations. There are a lot of factors to consider and
one of them is the structure of towns generated by road networks. One way
to study these structures is to modelize the networks by graphs and to use
the theory developed on them. Recently, some works have studied the de-
tection of communities in large graphs. A community in a graph is a set
of connected nodes strongly connected to each other and less connected to
nodes from other communities. The aim of detection is to identify commu-
nities according to a predefined criteria but without specifying the number of
communities and the size of communites. The known algorithms find com-
munities but without taking into account the time. We propose a dynamic
algorithm of communities detection and we explain how it can be applied on
Le Havre agglomeration, for example, to estimate the vulnerability related
to the road network use by vehicles.

1 Introduction
Modeling the population flow aims to provide a simplified representation of the
population displacement, which is a complex phenomena. It must take into ac-

1Corresponding author. Authors are alphabetically ordered. Michel Nabaa research is sup-
ported by Haute-Normandie Region.
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count the displacement of individuals in their normal daily activities or under ex-
ceptional activities requiring an evacuation in a danger case. Models must eventu-
ally allow a better understanding of the parameters influencing the flow evolution
and provide decision making tools to know the spatial and temporal distribution
of people in a given urban zone. The objective is therefore to realize a simulation
that can be used to define a strategy for evacuation planning and crisis manage-
ment. Different types of models exist and may be used depending on the level of
accuracy and representation of the flow we search for. But we can identify three
main families of flow modelling : microscopic, macroscopic and hybrid models.
In Le Havre Agglomeration (CODAH), we are faced to different types of natural
and industrial hazards; 33 establishments are classified SEVESO2. In this context,
the Major Risk Management Direction team (DIRM) of CODAH has developed
a model which estimates the nocturnal and diurnal exposed population allocation
PRET-RESSE (Bourcier and Mallet, 2006). So, we have ventilated the day / night
population inside buildings. The model was able to locate people during the day
both in their workplace and their residence (the unemployed and retirees). Al-
though the model is able to locate the diurnal and nocturnal population, it remains
static because it does not take into account the daily movement of people and the
road network utilization.
The using of road network by vehicles with diffrent behaviors can generate a dan-
ger especially in case of evacuation situations. So, it is important to us to detect
congested areas that may be more vulnerable than others. In the literature, many
clustering algorithms have been applied on a graph to detect organisations accord-
ing to a predefined criteria as the connectivity, the distance or capacity of edges
between adjacent nodes. Most of these models are static and do not meet the dy-
namic due to graph evolution.
Since CODAH can be seen as a graph on which we have vehicles flow that evolve
during time, we develop a dynamic algorithm which dynamically detects organi-
zations according to the traffic state. The algorithm belongs to collective intel-
ligence algorithms and can be referred to as an ant algorithm. the result of this
algorithm must be visualized, as a dynamic map, in the Geographical Information
System (GIS) of CODAH to help decision makers in assessing the danger related
to road network use by vehicles.

2Directive SEVESO is an European directive, it lays down to the states to identify potential
dangerous site. It intends to prevent major accidents involving dangerous substances and limit
their consequences for man and the environment, with a view to ensuring high levels of protection
throughout the Community.
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2 CODAH as a complex system
We are intersted in detecting vulnerability related to the road network use in CO-
DAH and we are working with DIRM team to setup a decision making tool as-
sessing this vulnerability. In this context, it is very important to understand the
dynamic related to the road network use by vehicles. In fact, a vehicle tends to
follow the same path taken by other vehicles to evacuate a dangerous area. In this
case, any perturbation (accident...) may cause traffic jams causing serious prob-
lem to evacuees. So, we can see CODAH as a system in which the environemnt
may influence on evacuation to reduce or not the flow fluidity(existence or not of
safe refuge and emergency exits, routes traffic direction) and vice versa (a fire or
an accident may cause damages and change the environment).
For us, CODAH can be seen as a complex system in perpetual evolution, in which
vehicles interact between them and with environment (vehicles acts on environ-
ment which in turn influences vehicles).

Complex system CODAH
A big number of entities interacting
with some others (dispersed inter-
actions)

Vehicles on the same route interact
but not necessarily with vehicles on
other routes

Absence of global control We have some local rules (traffic
lights, priorities on intersections)
but no global control

There are cross-hierarchical organi-
zations with many interactions

An organization of rescue service
interacts with vehicles in a danger-
ous area

Continual adaptation, learning and
thus evolution

Vehicles learn about congestions in
some zones at peak hours in the
journey and try to avoid them

Perpetual evolution with appearing
and disappearing of organizations

Traffic jams can appear and disap-
pear in time and at different places

The system is far from equilibrium
dynamics (no equilibrium or transi-
tion from an equilibrium to another
one.

Passing from a normal situation to a
traffic jam and vice versa

Table 1: CODAH meets complex system properties defined by Arthur et al.

A complex system is characterized by numerous entities of the same or dif-
ferent nature that interact in a non-trivial way (non-linear, feedback loop ...); the
global emergence of new properties not seen in these entities : Properties or evo-
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lution cannot be predicted by simple calculations. According to Arthur, Durlauf
and Lane (?), a complex system has six properties. Table ?? shows these proper-
ties and shows that CODAH can be seen as complex system with a big number of
vehicles interacting on the road network.

3 Traffic approaches
Traffic modelling becomes a point of interest for different researchers coming
from different fields. It may help decision makers to resolve congestion problems
by introducing a set of rules related to environment and different behaviours in
entities (vehicles, pedestrians...). In risk context, it helps decision makers to have
a better idea about vehicles distribution in space and time to assess vulnerability
and to prepare evacuation plans. It can be seen as a complex system in which we
have an environement (graph, grid...) and entities in interaction. We can identify
three big families of traffic modelling:

• Macroscopic models : The macroscopic model is based on the analogy be-
tween vehicular traffic and the fluid flow within a canal.

• Microscopic models : The microscopic model details the behavior of each
individual vehicle by representing interactions with other vehicles and in
general by using a spatialization. Interactions are generally modeled by car
following rules. We can also refine the model by adding passing lanes rules,
priority rules on roads intersection, traffic lights, accidents... So, vehicles
with different behaviors interact between them and organizations (traffic
jams) may appear. With a top down approach, we can examine the global
behavior of the system and try to locally modify the environment, when
necessary, to ameliorate the system. Recently, some researchers worked on
a traffic model in which we have to simulate an urban zone with vehicles
and pedestrians. In (?), a model is adopted combining cellular automata and
Agent Based Model (ABM). For the vehicles, two-way traffic with turning
movements are adopted with simples rules of acceleration and decelera-
tion (due to other vehicles, intersections, or pedestrians). For the pedestri-
ans, they have destination points, influenced by marked crosswalk, walk on
sidewalk or street, cross if they feel safe (no near vehicles). Accidents may
occur if a vehicle hasn’t sufficient time to stop when pedestrian crosses the
street (signalized crossing or not) and the severity of an accident depends
on vehicle speed. It was difficult to compare results with any verified model
because, according to the authors, there was no previous study which has
been done on such interactions.
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• Hybrid models : The hybrid model allows coupling the two types of dynam-
ics flow models within the same simulation. Several works have already
borrowed this direction (???), however, this approach is relatively new and
very few have adopted it to our knowledge (?). In risk context, the use of
a hybrid model is very important especially when dealing with large vol-
ume of data : changing the scale from micro to macro in a region where
we haven’t a crisis situation (everything is normal) allows to economize the
computation and the change from macro to micro in a critical situation al-
lows to zoom and detect the behaviors and interactions between entities in
danger.

4 Risk modelling
Traditional methods evaluating the risk for population do not generally treat evac-
uees behavior (e.g. initial response to an evacuation, travel speed, family interac-
tions / group, and so on.); they describe prescriptive rules as the travel distance.
The computerized models offer the potential to evaluate the evacuation of a neigh-
borhood in emergency situations and overcome these limitations (?), even than in
panic situation, the human behaviour can not be easily predictable and modeled.
In this context, Provitolo (?) studied the spread of the panic of a group of individ-
uals in danger situation to non panicked people. For the author, panic generally
results from the lack of coordination and dialogue between individuals. She used
a dynamic system (differential equations) and STELLA software to simulate the
behavior of individuals. Several simulation scenarios were presented and showed
that the emergence of panic has not occurred in all scenarios when changing some
parameters. The emergence depends on the rate of transmission from a population
susceptible to panic to a panicked population , the time taken to return to a normal
behavior (the population is more panicked after the disaster) and the number of
initially panicked people. The principle of resilience was also discussed and rep-
resents the time that the system makes to return to its initial state after a period of
instability due to a disaster.
Cova and Church (?) opened the way on the study based on geographic infor-
mation systems to evacuate people. Their study identified the communities that
may face transport difficulties during an evacuation. Research has modelled the
population by lane occupation during an evacuation emergency using the city of
Santa Barbara.
An optimization based model (graph partitioning problem) was realized to find
the neighborhood that causes the highest vulnerability around each node in the
graph and a vulnerability map around nodes in the city was constructed. A con-
structive heuristic has been used to calculate the best cluster around each node.
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This heuristic was developed in C and the result was displayed on a map (with
ArcInfo).
Nevertheless, in this approach, we predefine the maximum number of nodes in a
neighborhood (or a community), which may not always be realistic and does not
take into account the traffic evolution during the calculation of critical neighbor-
hoods. So, the vulnerable neighborhoods don’t evolve according to traffic state.

5 Communities detection
Our aim is to identify communities in graphs according to a predefined criteria
and without any fixing of number of communities and the number of nodes per
community.

5.1 Some definitions
For Newman et al, a community is a set of nodes strongly linked to each other and
more weakly linked to the outside world, according to a predefined criteria, but
without any fixing of the nodes number in each community (?).
Radicchi (?) proposes two possible definitions to quantify Newman definition:

• Community C in a Strong Sense : doutC (i) > dout
C̄

(i),∀i ∈ C.
A node belongs to a strong community if it has more connections within the
community than outside.

• Community C in a Weak Sense :
∑

i∈C d
out
C (i) >

∑
i∈C d

out
C̄

(i),∀i ∈ C. A
community is qualified as weak if sum of all degrees inside is more impor-
tant than sum of degrees towards the rest of the graph.

doutC (i) is the exiting edges number from a node i belonging to the community C
towards the nodes of the same community.
dout
C̄

(i) is the exiting edges number from a node i belonging to the community C
towards the nodes of other communities. Finding organizations is a new field of
research (??). Recent works identify two big families in organization detection in
large graphs.

• Graph partitioning : a NP-complete problem (?)which consists in grouping
nodes in fixed number of partitions with a fixed size, while minimizing the
number of inter-partitions connections.

• Data partitioning or hierarchical clustering : based on statistical methods
to analyse data and regroup similar data by using some similarity distance.
Many of works used this type of models (??).
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Stochastic approaches and collective explorations are generally based on random
walk in graphs (?). A random walk is a simple stochastic process. It is a formal-
ization of the intuitive idea that we can explore a graph if we walk from an initial
node and choose a next adjacent node randomly. To detect organizations, the main
idea lays on the fact that small random walks tend to be trapped into them (??).
A dissimilarity index (?) between two nearest neighboring vertices of the graph
is measured by a random walk. It is used to determine if nearest-neighboring ver-
tices must be in the same organization. It integrates both the local and the global
structural information of the given graph and bias can be introduced, injecting
numerical pheromones is an example.

5.2 Proposed algorithm
Our aim is to identify communities in graphs, i.e. dense areas strongly linked
to each other and more weakly linked to the outside world. If the concept of
communities in a graph is difficult to define formally, it can be seen as a set of
nodes whose internal connections density is higher than the outside density with-
out defining formal threshold (?). Thus the goal is to find a partition of nodes in
communities according to a certain predefined criteria without fixing the number
of such communities or the number of nodes in a community.
Interesting works were developed in the literature on the detection of structure in
large communities in graphs (????).
In our problem, we look for a self-organization in networks with an algorithm
close to the detection of communities in large graphs and belonging to collective
intelligence algorithms. Organizations connect elements, events or individuals by
interrelations so that they become components of a whole. They assume the soli-
darity and robustness of these links, and ensure that the system will eventually be
long lasting despite random perturbations. The organizations, therefore : trans-
form, produce, tie and maintain. Time is present generating the dynamic and we
will try to fight against these organizations, in the case of risk management, to
avoid bottlenecks which do not facilitate the evacuations.

Thus we will considered the graph at time t, G(t) = (V (t), E(t)) where the
edges are weighted, this weight being noted |e| for the edge e and represents the
needed time to cross this arc, depending on the current load of the traffic and we
try to define a colored dynamic graph G(t) = (E(t), V (t), C(t)).

The algorithm used can be referred to as an ant algorithm (?). Our ant algo-
rithm use several colonies of ants, each of a distinct color. Ants travel inside the
graph an lay down pheromones, information that can be detected by other ants.
Pheromones are also colored. Ants tend to be repulsed by pheromones of other
colors. Furthermore, ants tend to favor edges with important weights.
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Figure 1: Communities detection in a graph extracted from Amazon website

The colored dynamic graph previously mentionned is defined such that:

• V (t) is the set of vertices at time t. Each vertex v is characterized by:

– a color c ∈ C(t),

• E(t) is the set of edges at time t. Each edge e is characterized by:

– a weight |e| ∈ N+ that corresponds to interaction importance between
the elements at each end of edge e.

– a quantity of pheromones of each color.

• C(t) is a set of colors representing the ant colonies at time t.

The algorithm principle is to color the graph using pheromones. Each colony
will collaborate to colonize zones, whereas colonies compete to maintain their
own colored zone (see figure ??). Solutions will therefore emerge and be main-
tained by the ant behavior. The solutions will be the color of each vertex in the
graph. Indeed, colored pheromones are deposited by ants on edges. The color of
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Figure 2: Example of a dynamic evolution and communities detection.

a vertex is obtained from the color having the largest proportion of pheromones
on all incident edges (see algorithm ??).
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Algorithm 1: Ant behavior
n: current node
t: current time
A: fear of hostile environment threshold
T : resting time
∆t: time counter
if degree(n)=0 then

Jump randomly on another node
else

w ← Sum of all weights on each incident edge to n
τ ← Sum of all pheromones of all colors on each incident edge to n
τc ← Sum of pheromones of the ant color on each incident edge to n
a← τc

τ

if ∆t < T then
Choose an edge to cross in a weighted random fashion, using edges
weight (if available)
Lay down a small amount of pheromone of the ant color on this
edge
n← vertex at the other end of the chosen edge
∆t← ∆t+ 1

else
if a < A then

Jump randomly on another node
∆t← 0

else
Choose an edge to cross in a weighted random fashion, using
edges weight (if available)
Lay down a small amount of pheromone of the ant color on this
edge
n← vertex at the other end of the chosen edge

In our problem, we have an interaction between each two local adjacent nodes
according to the attraction force that exists between them. At each time step, this
force depends in our case on the report of the actual number of vehicles on the
arc between 2 nodes neighbors / vehicles capacity of the arc. This report was
chosen because, in every community, we will have a large number of vehicles
which all decide to exit through a single road in the case of a potential danger;
this responds well to one of the purposes listed in beginning to have a pessimistic
approach in the calculation of vulnerability. The algorithm has the advantage
of not allowing the breaking of a link between 2 adjacent nodes to maintain the
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structure of the road network. When the traffic evolves, the algorithm detects that
and communities can change or disappear as a result of local forces that change
between the nodes locally.
In previous work, we applied this algorithm on the Amazon website. Most of the
time, when we are on a page that describes some product, several other items are
recommended by the site. We see something like "customers that bought item
A also bought B, C, D...". The algorithm has detected and separated items in
communities depending on their similarity. Currently, we work on the application
of the algorithm on a graph with a dynamic flow model (see figure ??).

6 Dynamic model
Our system consists of two modules as shown in the figure ??.

Figure 3: System architecture

6.1 Simulation module
The simulation module contains three components:

• The dynamic graph extracted from the road network layer,

• The flow management component consists of vehicles flow simulator ap-
plied on the graph,

• The communities detection component : Its input is the extracted graph and
the current flow. It returns the communities that are formed according to the
current state of road traffic.

6.2 Visualization module
Recently, some interesting applications have been developed by including the pop-
ulation dynamics, the models of urban growth patterns and land use. In (?), the
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authors emphasize the importance of the collaboration between geographers and
multi agents system community to model spatial urban systems. They also un-
derline some conceptual and practical difficulties to such coupling. For computer
modelers, this integration provides the ability to have computing entities as agents
that are linked to real geographical locations. For GIS users, it provides the abil-
ity to model the emergence of phenomena by various interactions of agents in
time and space by using a GIS (?). So, combining several layers as houses, road
network, population... allows us to model different types of agents into a GIS
environment. Many researchers have emphasized the need to create vector based
Multi Agents System (MAS), which may require the topological data structure
provided by using a GIS (?). In geography, the representation of a MAS coexists
n levels of organizations and use several classes of agents (e.g. Level 1: individ-
uals or companies, Level 2 and three: economic, urban communities).There will
be rules at every level and the approach is not necessarily a bottom up one (as in
the models of self-organization). . .) (?).

In this paper, the visualization module consists of the road network layer in-
tegrated into the GIS. This layer represents CODAH network layer. This module
communicates with the simulation module: the graph is constructed from this
module, which in turn get the simulation result and visualize it as a dynamic vul-
nerability map.

6.3 Environment modeling
The road network is integrated as a layer in the Geographic Information System
(GIS). From this layer, we extract the data by using the open source java GIS
toolkit Geotools. This toolkit provides several methods to manipulate geospatial
data and implements Open Geospatial Consortium (OGC) specifications, so we
can read and write to ESRI shapefile format. Once data road network are ex-
tracted, we use the GraphStream tool (?) developed within LITIS laboratory of
Le Havre to construct a graph corresponding to the GIS network layer. This tool
is designed for modeling; processing and visualizing graphs.
The data extracted from network layer contains the roads circulation direction,
roads id, roads type, their lengths and geometry.
The extracted multigraph G (t) = (V (t), E (t)) represents the road network at time
t where V (t) is the set of nodes at t and E (t) the set of arcs at t. We deal with
a multigraph because we have sometimes more than one oriented arc in the same
direction between two adjacent nodes due to multiple routes between two points
in CODAH road network. GraphStream facilitates this task because it is adapted
to model and visualize multigraphs. In the constructed multigraph:
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• The nodes represent roads intersections,

• The arcs represent the roads taken by vehicles,

• The weight on each arc represents the needed time to cross this arc, depend-
ing on the current load of the traffic

• Dynamic aspect relates to the weights of the arcs, which can evolve in time,
according to the evolution of the fluidity of circulation.

We have also constructed a Voronoi tessellation (Thiessen polygon) around nodes
and projected the population in buildings on these nodes. The population in build-
ings is extracted from PRET-RESS model.

6.4 Vehicles flow
We have adopted a macroscopic model in which flows circulate normally (with-
out accidents) in order to establish a dynamic pessimistic vulnerability map. In
evacuation situations (when an accident occurs), this macroscopic model is not
relevant to the reality because most of people panic and take the same road to exit
the dangerous area. Hence, it is important to develop a micro approach with multi-
scale description (from micro to macro and vice versa during the simulation) to
simulate scenarios of danger in real time (accidents, behavior of drivers, vehicles
interactions. . . ).

7 Conclusion
The proposed method allowed us to dynamically detect organization in large graphs.
We will apply this algorithm on the graph extracted from CODAH road network
layer. It will serve decision makers to estimate the risk due to the use of the road
network by vehicles and categorize CODAH areas by their vulnerability. We will
complete our work by using real traffic data retrieved from a displacements survey
with CODAH population which will help us to better locate people during the day
and therefore having a more realistic vulnerability dynamic map.
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