
 Abstract

This work presents the principal algebraic,
arithmetic and geometrical properties of the kC    spline
functions  as well in the temporal space as in the
frequencies space. Thanks to their good properties of
regularity, of smoothness and compactness in both
spaces,  precise and powerful computations  implying

kC  spline  functions can be considered.
The main property of kC spline functions is to have

for coefficients of their functional expansion of a
considered function, the whole set of partial or
complete derivatives up to the order k of the considered
function.

This fundamental property allows a much easier
representation of complex systems as well in the linear
case as in the nonlinear case. Then traditional
differential and integral calculations leads in the space

kC  spline  functions space to new functional and
invariant calculations.
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1.  Introduction

The kC spline functions appear now as a powerful
tool, not only for numerical computation, but also for
the formal calculation. The basic property of these
functions is to have for coefficients of functional
development of a considered function, the whole partial
or complete derivatives of this function until the order
k.
Thus the kC  spline functions expansion can be view as
interpolating functions of local Taylor-Maclaurin
expansions up to the order k defined at each point of

discretization of the considered function whereas the
known traditional splines (B splines....) are in general

preset functions. This property which is specific of the
kC  spline functions leads to a uniform convergence of

the solution in function of k and the number of point of
dicretization. This uniform convergence is to our
knowledge only seen in kC spline functions
computations

Moreover, the Fourier transforms of  these  kC
splines are kC   wavelets which have  the same
remarkable property   to have for coefficients of  the
spectrum functional  development   of a  function    in
their space  the partial  or  complete derivatives of the
considered function until the order k  i.e.  the same ones
as those obtained  in  the temporal  kC  splines space.
This fact opens the way, for example, to a new time-
frequency signal analysis and especially to a new
functional and invariant calculation replacing the
differential and integral calculus by simple index
manipulation. This allows to simplify representation of
complex system as well linear as non linear.

An other important advantage of these functions
(splines or wavelets) is their remarkable property to
obtain a functional representation with a very high
accuracy with a small number of coefficients, and this
in both spaces with the same precision.

In this article, first we present the main properties of
kC Spline functions in the direct space.
 In a second part, we gather the properties of

kC Splines spectra or kC  wavelets.
In the third part, an example of kC wavelet

expansion applied to sin(x) is shown and provides the
uniform convergence with excellent rate and accuracy.
Only one dimensional kC spline functions are
considered but they can be easily extended to
multivariate case.

Finally in the fourth part, we show that the
representation of the state equations of as well linear
systems as nonlinear systems leads, in the space of

kC splines, to a functional and invariant calculation at
place of the classical differential and integral calculus.
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2.  kC  Spline functions. Temporal space

2.1  The equally spaced nodes representation

Let u(x) be a k time continuous and differentiable
one-dimensional function defined on an appropriate set
Ω , which contains I+1 equally spaces nodes

0 1 Ix x … x, , , .

( )k Iu x,  the kC  approximation of this function on

Ω   is written as,
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where iuν  is the thν  derivate of u(x) with respect to x

at the node ix , ( )k
iS xν, is the thν kC  Spline function

centered at the node ix  and defined on the set

( 1) ( 1)[ ]i ix x− +, , ( )k
RiP xν, and ( )k

LiP xν, are respectively

the right and left sides of the kC  Spline function
( )k

iS xν, and are defined respectively on the intervals

( 1)[ ]i ix x +, and ( 1)[ ]i ix x− , . These definitions are done

[0 ]i I∀ ∈, ,  [0 ]kν∀ ∈ , .

2.2  The unequally spaced nodes representation

Under an arbitrary nodes distribution on the set Ω ,
i.e. I+1 unequally spaced nodes 0 1 Ix x … x, , , ,  ( )k Iu x,

can be written as,
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where  ( )1 ( )k
R iP xν,

−  and ( )k
LiP xν,  have the same support

( 1)[ ]i ix x− , .

2.3   Algebraic properties

Referring to [1], the kC  Spline functions are
defined by,
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where the v
da  or the Rdaν  and Ldaν  are the polynomial

coefficients generating the kC  Spline functions and

( 1)i i ix x x −∆ = − . The main properties of these

coefficients are,
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For example, the following list gives the Rdaν and

the Ldaν  for k=2 and 1∆ =x .
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2.4   Representation of the kC Spline functions

Let us consider using Figure 1 the four 3
0 ( )S xν, ,

[ ] [ ]0,3 ,   1,1xν ∈ ∩ ∈ − ∩¥ ¡  centered at the

point 0 0x = .
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0Figure1: , 0,3The Four S ν ν ∈

We can see easily that
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i.e.  each spline function assumes the representation of a
fixed derivative 1 at the point O and has a zero
derivative for  iν ≠  and for  0jx ≠   ( orthogonality

).

On the figure 1, the 3
0 ( )RP xν, and the 3

0 ( )LP xν,  can
be defined as respectively the right and the left sides of
the  3

0 ( )S xν,   i.e. as the polynomial functions defined

respectively on [0,1]  and[ 1,0]−  for each  3
0 ( )S xν,    .

3.   kC  Spline Spectra. Frequency space

Let u(x) be a k time continuous and differentiable
one-dimensional function defined on an appropriate set
Ω , which contains I+1  nodes 0 1 Ix x … x, , , .

Defining ( )k Iu θ, , the Fourier Transform of

( )k Iu x,  where θ  is the dual Fourier variable of x, we

have,
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3.1 The equally spaced nodes spectra interpolation

When the I+1 nodes 0 1 Ix x … x, , , of the set Ω  are

equally spaced, we can replace ( )k Iu x, by (1), we

obtain,
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where the ( )k
nS

ν θ, , 0 ( )k
RP

ν θ, ,and ( )
k
LIP

ν
θ

,
 are

respectively the Fourier Transform of ( )k
nS xν, ,

0 ( )k
RP xν, and ( )k

LIP xν, .

Finally,
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where the 0 ( )k
S

ν θ, , 0 ( )k
RP

ν θ, ,and 0 ( )
k
LP

ν
θ

,
 are

respectively the Fourier Transform of 0 ( )kS xν, ,

0 ( )k
RP xν, and 0 ( )k

LP xν, defined at the node 0x   and

1 0 2 1 1I Ix x x x x x x −∆ = − = − = ⋅⋅⋅ = − .

3.2 The unequally spaced nodes spectra
interpolation

Under an arbitrary nodes distribution i.e. unequally
spaced nodes 0 1 Ix x … x, , ,  by the same way than in

3.1, ( )k Iu θ, can be written as,
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As we saw in section 3.1 and 3.2, calculating
( )k Iu θ,  the Fourier Transform of ( )k Iu x, , leads to

study both the 0 ( )k
S

ν θ, , ( )k
RiP

ν θ, , and  ( )
k
LiP

ν
θ

,

respectively the Fourier Transform of 0 ( )kS xν, ,

( )k
RiP xν,  and ( )k

LiP xν, .

3.3.1  kC  Spline 0 ( )k
S

ν θ,
relations

The following Lemmas result from kC Spline
properties section 2-3 and from classical algebraic
computations.

LEMMA 3.3.1.1 :   Let 0 ( )k
S

ν θ,  be the Fourier transform

of 0 ( )kS xν, , we have,
for ν  even,
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where [ ]U . , max(.,.) and E[.] are respectively the
Heaviside, the maximum and the Floor functions. ι& is
defined as 2 1ι = −& .

LEMMA 3.3.1.2:  0
k

S
ν, defined by the lemma 3.3.1.1 is

singular at 0θ = . Near this point we have for ν  even
the following Taylor development,

( ) 1 2
0

0
( 1) 2 ( 1) [ ]l l

l

lk k
exS ν νθ θ β ν

+∞
, +

=
= − ∆ − ,∑

with,

                                           

2

1
2

2

[ ] 1

2 1

[ ]

(2 2 )( 1) (2 )[ ] (2 1) (2 ) (2 2 1) (2 )

(2 2 1)
(2 2 2) (2 )

k

k

k k j
e

j E

k j

j E

a ja
j

a j
j

ννν

ν

β νν
ν

+

= +

+

=

+ !− + !, = +
+ + ! ! + + ! !

+ + !
−

+ + ! !

∑

∑

lll
l l l l

l

l l

for ν  odd we have,

( ) 1 1 2 1
0

0
( 1) 2 ( 1) [ ]l l

l

& lk k
oxS

ν νθ ι θ β ν
+∞

, + + +

=

= − ∆ − ,∑
with,

1
2

2

2 1

[ ]

2

[ ] 1

                                             
(2 2 2)

(2 2 3) (2 1)

(2 2 1)( 1) (2 1)[ ] (2 2) (2 1) (2 2 2) (2 1)

k

k

k j

j E

kk j
o

j E

a j
j

a ja
j

ν

νν
νβ νν ν

+

+

=

= +

+ + !
−

+ + ! + !

+ + !− + + !, = +
+ + ! + ! + + ! + !

∑

∑

l

l l

lll
l l l l

Clearly [ ]eβ ν,l  and [ ]oβ ν,l  ∈ ¤ ,

[ ] [1 2 2] [0 ]k kν∀ , ∈ , + × ,l .

3.3.2   Representations of 0 ( )k
S

ν θ,

The Fourier transform of these kC  Spline functions
are Ck wavelets, and are given Figure 2 for k=3.The

( )k
iS

ν θ, are real functions for v even and imaginary
functions for v odd.
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We can notice their excellent localization properties.

3.3.3  ( )k
RiP

ν θ,
 and ( )

k
LiP

ν
θ

,
relations

In this case, we define in Ω  a series of intervals

0 0( 1)i i ix x x −∆ = − . Same considerations as in

paragraph 3.3.1.1. lead to the following lemmas:

( )3,0
01) Re    al part of S θ ( )3,1

02) Im    aginary part of S θ

( )3,2
03) Re    al part of S θ ( )3,3

04) Im    aginary part of S θ



Lemma 3.3.3.1:  Let  ( )k
RiP

ν θ,  be the Fourier

transform of ( )k
RiP xν, ,  for ν  even we have,

2

2

1
1 2

1 2 1
[ ]

(2 ) ( 1)( 1)( ) ( 1)
k

k dkk k d
iRi d

d E

a dixP
ν ννν

νθ
θ θ

⎧ ⎛
⎪ ⎜⎪ ⎜⎨

⎜⎪ ⎜⎪ ⎝⎩

− +
+,

+ +
=

! −−= − −∆ ∑

2 2

1

( 2)    [ ]
k sin θ π γ

θ

+

=

+ / ⎞+ ⎟
⎠

∑ l
l

l
l

2

2 2
2 1

2 2
1[ ]

(2 1) ( 1) ( 2) [ ]
k

dk k
id

d
d E

a d cos e
ν

θθ π γ
θθ

+
−+

+
==

⎫⎛ ⎞⎪⎜ ⎟⎬⎜ ⎟⎪⎝ ⎠⎭

+ ! − + /+ −∑ ∑ l
l

l
l

For  ν   odd we have,

1( )21 ( 1)( ) ( 1) 1

k
k k xP iRi

ν
νν θ νθ

⎧⎛
⎪⎜
⎪⎜⎪
⎨⎜
⎪⎜
⎪⎜
⎝⎪⎩

+−
+ −, ∆= − ++

1
2

1 2 2
(2 1)
2 2

[ ] 1

(2 1) ( 1) ( 2) [ ]
K

dk k
d
d

d E

d a cosν θ π γ
θ θ+

+ +
+
+

= =

⎞+ ! − + /
+ ⎟⎟

⎠
∑ ∑ l

l

l
l

2

2 2
(2 )

2 1
1[ ] 1

(2 ) ( 1) ( 2) [ ]
k

dk k
d i

d
d E

a d sin e
ν

θθ πι γ
θθ

+
−

+
== +

⎫⎛ ⎞⎪⎜ ⎟⎬⎜ ⎟⎪⎝ ⎠⎭

! − + /+ −∑ ∑ l
l

l
& l

with,
2 2

1 [ ( 2) 0]

( 1) ( 1) [ 1 ][ ]
( 1 ) ( 1 )

j kk
j

j k Max k

a j U
j

ν νγ
ν

+

= + + − + ,

! − − + −
= +

+ − ! + −∑
l

l
l

l l

The various coefficients of these functions belong
clearly to ¤ .

Lemma 3.3.3.2:  ( )k
RiP

ν θ, is singular at 0θ = . Near
this point, we have for all ν  the following Taylor
development,
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Lemma 3.3.3.3:  Let ( )
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be the Fourier transform
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LiP xν, ,

For ν even we have,
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Then as in the lemma 3.3.2.1., the various
coefficients of these functions belong also to ¤ .
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3.3.4 Representation of the ( )k
RiP

ν θ,
and the ( )
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The real parts and imaginary parts of spectra



 ( )k
RiP

ν θ, and ( )
k
LiP
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,
for k=3 and 1x∆ =  are shown

in   Figure 3.We can easily verify properties 3.3.2.3
and

4. Example: kC  wavelets representation of
Sinus.

Figure 4 gives, left, the exact representation of the
Fourier transform of Sin(x) on [0 10]Ω = ,   and right,
its wavelets representation for k=5 , I=5 and with

equally spaced nodes (
5

2
∆ =x ).The wavelets

interpolation of sin(x) is done with the use of  (9).

( ) [ ] ( )
( )

        

                          

4: sin 0,10
k

Figure Exact Fourier Transform of x x left

and its C wavelet representation right

∈

We can notice the very good precision of the kC
wavelets representation for a small numbers of k and I.

In fact the draw on a three-dimensional plot of

10 ( )og e ε=l  versus I  and k  shows a uniform

convergence of ε  to −∞ , as k  and I  grow (see
figure 5).

        5 :Figure Error versus k and Iε

{ }{ }2
( ) ( )k Ie TF Sin x du θ θ

+∞

,−∞
= −∫ .

5. Representation of complex systems

The main property of  spline functions is to have for
coefficients of development of a function the whole
partial or complete derivative up to k order of the
considered function. This allows to simplify the
representation of state or differential equations of as
well linear or nonlinear systems by transposing the
classical differential and integral calculus in a
functional and invariant calculation.

5.1. Linear systems

Let us consider a linear system represented by ;
x Ax Bu= +&

where x is the state vector of dimension N , u is the
control vector of dimension m,  A is the dynamical real
matrix of dimension NxN ,  B is the control real matrix
of dimension Nxm.

( ),k Ix t  the kC approximation of the state vector

( )x t can be written as
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where ixν  is the thν  derivate of  x(t) with respect to t

at the node it , ( )k
iS tν, is the thν kC  Spline function

centered at the node it  and defined on the set

( 1) ( 1)[ ]i it t− +, .

 Using the state equation (),the thν  derivate of  x(t)
can be expressed as,
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and depends only on ix  i.e. the amplitude of ( )x t at

the discretized time it  and of ( )1ν −  derivatives of

the control vector u(t). and the precision  depends on k
and  ν .

5.2. Differential nonlinear  explicit  systems

Let us consider a differential nonlinear explicit
system defined by,

( )x F x=&
Where x is a state vector of dimension N and F is

generally an analytic or C∞  nonlinear function of the
state.

 We define the vector field [ ]F associated to [ ]F x
such as:
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The kC  Spline expansion of x (t) is:
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Where ixν  is the thν  derivate of x (t) with respect to

t at the node it , ( )k
iS tν, is the thν kC  Spline function

centered at the node it  and defined on the set

( 1) ( 1)[ ]i it t− +, .

We obtain:
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Which depends only on ix  i.e. the amplitude of x (t)

at discretized time it .

Example: One-dimensional differential nonlinear
system 2x x=& .
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5.3. Differential nonlinear implicit systems

Let us consider a differential nonlinear implicit
system defined by,

( ), , 0F x x u =&

where x is the state vector, of dimension N, x& the
derivative of state vector, u the control vector of
dimension m and F  is an analytic or C∞ nonlinear
function.

Same considerations than in paragraphs 5.1, 5.2 lead
to,
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6. Conclusion

We have presented in this paper the main algebraic
expressions and properties of the one-dimensional kC
spline functions as well in temporal space as in
frequency space. We have also shown that for as well
linear as non linear systems , the classical differential
and integral calculus can be replaced in kC  splines
space by functional and invariant calculation.  The
major advantages of kC  spline functions can be
summarized as follows:

-Coefficients of functional expansion by kC  splines
are the same as well in time space as in frequency
space. These coefficients are the k derivatives of the
considered function, at each point of discretization.

- kC  spines have excellent approximation

properties. Interpolation by kC  Spline converges
uniformly with excellent rate and precision. We have
shown that with K=5 and I=10 the error estimate of
sinus spectra approximation is around 3010− .

Interpolation by kC  Spline is also available for non
uniformly spaced data without any inconvenience.

- kC  splines and their wavelets have excellent
localization properties. They open a new way for time-
frequency signal analysis.

- The representation of as well linear as non linear



complex systems in the space of kC  splines leads to an
functional and invariant calculation at place of  the
classical differential and integral calculus.

The method is to our knowledge the only one
which generates a functional space stable through the
integral and differential operators and open the way to a
new numerical analysis.

This allows to simplify and to rewrite a large
number of classical problems, as for example nonlinear
optimal control, where the transposition of this
differential problem leads to a functional problem in the

kC  spline functions spaces, permitting easily the
complete elimination of the adjunct vector with the well
know associated numerical or differential troubles.
Dynamical equations, differential constrains or
boundary conditions can be introduced in the kC
spline functional space as algebraic relation
transforming the initial space in a dedicated manifolds.

- The Fourier transforms of  kC  splines are  kC
wavelets with the same good properties  opening the
way to a new frequency analysis of nonlinear systems.
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