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ABSTRACT

We consider a three-variables model of neuronal bursting
elaborated by Hindmarsh and Rose which is one of the
most used mathematical representation of the widespread
phenomenon of oscillatory burst discharges that occur in
real neuronal cells. Using a kinematics method developed
in our previous works, we provide the slow manifold ana-
lytical equation of such model and discuss its attractivity,
i.e., its stability.

1. Hindmarsh - Rose model of bursting neurons

The transmission of nervous impulse is secured in the brain
by action potentials. Their generation and their rhythmic
behaviour are linked to the opening and closing of selected
classes of ionic channels. The membrane potential of neu-
rons can be modified by acting on a combination of dif-
ferent ionic mechanisms. Starting from the seminal works
of Hodgkin-Huxley [7-11] and FitzHugh-Nagumo [3, 12],
the Hindmarsh-Rose [6, 13] model consists of three vari-
ables: x, the membrane potential, y, an intrinsic current
and z, a slow adaptation current.





dx
dt = y − f (x)− z + I
dy
dt = g (x)− y
dz
dt = ε (h (x)− z)

(1)

I represents the applied current, f (x) and g (x) are re-
spectively cubic and quadratic functions which have been
experimentally deduced [5].

f (x) = ax3 − bx2

g (x) = c− dx2

ε is the time scale of the slow adaptation current and
h (x) is the scale of the influence of the slow dynamics,
which determines whether the neuron fires in a tonic or
in a burst mode when it is exposed to a sustained current
input. In the following two different functions h (x) will

be used:

h (x) =





x− x∗

K µ(x+1+k)−1
µ(1+2k)−1

(2)

where k, K and µ are constants.

It can be written as a system of differential equations
defined in a compact E included in R :

d ~X

dt
=




dx
dt

dy
dt

dz
dt


 =

−→=




f (x, y, z)

g (x, y, z)

εh (x, y, z)


 (3)

with

−→
X = t [x1, x2, ..., xn] ∈ E ⊂ R

and

−→= (
−→
X ) = t

[
f1(
−→
X ), f2(

−→
X ), ..., fn(

−→
X )

]
∈ E ⊂ R

The vector
−→= defines a velocity vector field in E whose

components fi which are supposed to be continuous and
infinitely derivable with respect to all xi and t, i.e., are C∞

functions in E and with values included in R, check the
assumptions of the Cauchy-Lipschitz theorem. For more
details, see for example [2].

A solution of this system is an integral curve ~X (t) tan-
gent to

−→= whose values define the states of the dynamical
system described by the Eqs. (3). Since none of the com-
ponents fi of the velocity vector field depends here explic-
itly on time, the system is said to be autonomous. More-
over, the presence of the small multiplicative parameter ε
in one of the components of the velocity vector field makes
it possible to consider the system (3) as a slow-fast au-
tonomous dynamical system (S-FADS). So, it possesses a
slow manifold, the equation of which may be determined.
Paradoxically, we will see below that this model is not
slow-fast in that sense.



2. Analytical slow manifold equation

There are many methods of determination of the analytical
equation of the slow manifold. The classical one based on
the singular perturbations theory [1] is the so-called singu-
lar approximation method. But, in this specific case, one
of the hypothesis of the Tihonov’s theorem is not checked
since the fast dynamics of the singular approximation has
a periodic solution. Thus, another approach developed by
Ginoux et al. [4] which consist in using the Differential
Geometry formalism is proposed.

2.1. Singular approximation method

The singular approximation of the fast dynamics consti-
tutes a quite good approach since the third component of
the velocity is very weak and so, z is nearly constant along
the periodic solution.

On the one hand, since the system (3) can be consid-
ered as a (S-FADS), the slow dynamics of the singular ap-
proximation is given by:

(∑
as

) {
f (x, y, z) = 0
g (x, y, z) = 0 (4)

The resolution of this reduced system composed of the
two first equations of the right hand side of (3) provides a
one-dimensional singular manifold, called singular curve.
This curve doesn’t play any role in the construction of the
periodic solution. But we’ll see that there exists all the
more a slow dynamics.

On the other hands, it presents a fast dynamics which
can be given while posing the following change:

τ = εt ⇔ d

dt
= ε

d

dτ

The system (3) may be re-written as:

d ~X

dτ
=




dx
dτ

dy
dτ

dz
dτ


 =

−→=




ε−1f (x, y, z)

ε−1g (x, y, z)

h (x, y, z)


 (5)

So, the fast dynamics of the singular approximation is
provided by the study of the reduced system composed of
the two first equations of the right hand side of (5).

d ~X

dτ

∣∣∣∣∣
fast

=

(
dx
dτ

dy
dτ

)
=
−→=

(
ε−1f (x, y, z∗)

ε−1g (x, y, z∗)

)
(6)

Each point of the singular curve is a singular point of
the singular approximation of the fast dynamics.

For the z value for which there is a periodic solution,
the singular approximation exhibits an unstable focus, at-
tractive with respect to the slow eigendirection.

2.2. Kinematics methods

Now let us consider the three-dimensional system defined
by (3). In this new approach it is first necessary to de-
fine the instantaneous acceleration vector of the trajectory
curve ~X (t). Since the functions fi are supposed to be C∞

functions in a compact E included in R, it is possible to
calculate the total derivative of the vector field

−→= defined
by (3). As the instantaneous vector function

−→
V (t) of the

scalar variable t represents the velocity vector of the mo-
bile M at the instant t, the total derivative of

−→
V (t) is the

vector function −→γ (t) of the scalar variable t which repre-
sents the instantaneous acceleration vector of the mobile
M at the instant t. It is noted:

−→γ (t) =
d
−→
V (t)
dt

(7)

A new approach of determining the slow manifold equa-
tion, called osculating plane method has been proposed in
[4].

It states that the osculating plane equation to the tra-
jectory curve ~X (t), integral of the dynamical system de-
scribed by the Eqs. (3), constitutes the slow manifold equa-
tion of a (S-FADS) defined by Eq. (3).

Proposition 1.

If I (x0, y0, z0) is one of the equilibrium points of a
dynamical system defined by Eqs. (3) and represented
by the instantaneous velocity vector

−→
V (t) from which the

instantaneous acceleration vector −→γ (t) is deduced, then,
the plane (P) going through the fixed point I (x0, y0, z0)
and having for direction vectors the instantaneous vectors−→
V (t) and −→γ (t) is defined by the coplanarity condition
between

−→
V (t), −→γ (t) and

−−→
IM formed starting from any

fixed point I and from any point M (x, y, z) belonging to
(P). So,

∀M ∈ (P ) ⇔ ∃ (µ, η) ∈ /
−−→
IM = µ

−→
V + η−→γ

This coplanarity condition may be written:

−−→
IM .

(−→
V ∧ −→γ

)
= 0 (8)

Thus, this equation represents the slow manifold of
the slow-fast autonomous dynamical system (S-FADS) de-
fined by Eq. (3).

Moreover, this model (3) exhibits some striking fea-
tures. Due to the presence of the small multiplicative pa-
rameter ε in the third components of its velocity vector
field, instantaneous velocity vector

−→
V (t) and instantaneous

acceleration vector−→γ (t) of the model (3) may be written:

−→
V




ẋ
ẏ
ż


 =

−→=




O
(
ε0

)

O
(
ε0

)

O
(
ε1

)


 (9)



and

~γ




ẍ
ÿ
z̈


 =

d
−→=
dt




O
(
ε1

)

O
(
ε1

)

O
(
ε2

)


 (10)

where O (εn) is a polynomial of n degree in ε

Then, it is possible to express the vector product−→
V ∧ −→γ as:

−→
V ∧ −→γ =




ẏz̈ − ÿż
ẍż − ẋz̈
ẋÿ − ẍẏ


 (11)

Taking into account what precedes Eqs. (9-10), it fol-
lows that:

−→
V ∧ −→γ =




O
(
ε2

)

O
(
ε2

)

O
(
ε1

)


 (12)

So, it is obvious that since ε is a small parameter, this
vector product may be written:

−→
V ∧ −→γ ≈




0
0

O
(
ε1

)


 (13)

Then, it appears that if the third component of this vec-
tor product vanishes then both instantaneous velocity vec-
tor
−→
V (t) and instantaneous acceleration vector −→γ (t) are

collinear. This result is particular to this kind of model
which presents a small multiplicative parameter in one of
the right-hand-side component of the velocity vector field
and makes it possible to provide their slow manifold equa-
tion.

Proposition 2.

If a (S-FADS) has its small parameter ε in one of the
right-hand-side component of its instantaneous velocity vec-
tor

−→
V (t), then the slow manifold equation associated to

this dynamical system is provided by the collinearity con-
dition between its instantaneous velocity vector

−→
V (t) and

instantaneous acceleration vector −→γ (t).

ẋÿ − ẍẏ = 0 (14)

Another method of determining the slow manifold equa-
tion proposed by Rossetto et al. [14] consists in consid-
ering the so-called tangent linear system approximation.
Then, a coplanarity condition between the instantaneous

velocity vector
−→
V (t) and the slow eigenvectors of the tan-

gent linear system gives the slow manifold equation.

−→
V .

(−→
Yλ2 ∧

−→
Yλ3

)
= 0 (15)

where
−→
Yλi represent the slow eigenvectors of the tan-

gent linear system. But, if these eigenvectors are complex
the slow manifold plot may be interrupted.

So, in order to avoid such inconvenience, this equation
has been multiplied by two conjugate equations obtained
by circular permutations.

[−→
V ·

(−→
Yλ2 ∧

−→
Yλ3

)]
·
[−→
V ·

(−→
Yλ1 ∧

−→
Yλ2

)]
·
[−→
V ·

(−→
Yλ1 ∧

−→
Yλ3

)]
= 0

Then it has been transformed into a real analytical slow
manifold equation which can be written:

3∑

i,j,k

αijkẋiẏj żk = 0 (16)

where αijk are coefficients only depending on the func-
tional jacobian matrix elements of the tangent linear sys-
tem. These coefficients are available at the address:
http://ginoux.univ-tln.fr

Proposition 3.

The coplanarity condition (15) transformed into the
equation (16) provides the slow manifold equation of sys-
tem (3).

3. Application to neuronal bursting models

3.1. Hindmarsh-Rose 84’model

In the beginning we will be interested in analyzing the first
three-dimensional model conceived by Hindmarsh and Rose
in 1984 [6]. This model is exactly the same as the one de-
scribed in the first section but for which h (x), is defined
as a linear function (2):

h (x) = s (x− x∗)

where (x∗, y∗) are the co-ordinates of the leftmost equi-
librium point of the model (1) without adaptation, i.e.,
I = 0. The Hindmarsh-Rose 84’ model is defined by:





dx
dt = y − ax3 + bx2 − z + I
dy
dt = c− dx2 − y
dz
dt = ε (s (x− x∗)− z)

(17)

Parameters used for numerical simulations are:
a = 1, b = 3, c = 1, d = 5, ε = 0.005, s = 4,

x∗ = −1−√5
2 and I = 3.25.

http://ginoux.univ-tln.fr�


Then, using the new approach presented in the above
section, i.e., the kinematics method, it is possible to pro-
vide the slow manifold of the Hindmarsh-Rose 84’model.

In Fig. 1 is presented the slow manifold of the Hindmarsh-
Rose 84’model determined with the osculating plane method.
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Figure 1. Slow manifold with the osculating plane method
(proposition 1).
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Figure 2. Slow manifold with the collinearity condition
(proposition 2).

With the proposition 2 the slow manifold is provided
with the use of the collinearity condition between both in-
stantaneous velocity vector

−→
V (t) and instantaneous accel-

eration vector −→γ (t).
The smallness of the parameter ε is responsible for the

great similarity between the Fig. 1 and Fig. 2.

The Fig. 3 presents the slow manifold of the Hindmarsh-
Rose 84’model obtained with the tangent linear system ap-
proximation.
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Figure 3. Slow manifold with the tangent linear system
approximation (proposition 3).

Thus, an explicit analytical equation of the slow man-
ifold of model (17) has been provided in three different
manners increasing each time the quality of the approxi-
mation till obtaining the whole this slow manifold.

Moreover, while using a new criterion of attractivity of
manifolds proposed in our previous works [4] and which
consists in considering the sign of the total derivative of
the slow manifold equation, it is possible to show that the
slow manifold is attractive for the trajectory curve ~X (t),
integral of the dynamical system. So, it delimits stability
domains of the phase space for these trajectories.



3.2. Hindmarsh-Rose 85’model

Now we are focussing our attention on the second three-
dimensional model elaborated by Hindmarsh and Rose in
1985 [13]. This model is still the same as the one described
in the first section but for which h (x), is defined as an
exponential function (2):

h (x) = K
µ(x+1+k) − 1
µ(1+2k) − 1

where K and µ are constants. This function was cho-
sen by the authors so that its gradient could be altered by
altering µ without moving the equilibrium point , and so
that:

h (−1− k) = 0

The Hindmarsh-Rose 85’ model is defined by:





dx
dt = y − ax3 + bx2 − z + I
dy
dt = c− dx2 − y

dz
dt = ε

(
K µ(x+1+k)−1

µ(1+2k)−1
− z

) (18)

Parameters used for numerical simulations are:
a = 1, b = 3, c = 1, d = 1.077, ε = 0.005, µ = 4.3,

K = 2, k = −1+
√

5
2 and I = 4.5

Then the slow manifold equation of this model is pro-
vided with the kinematics method, i.e., each proposition.

In Fig. 4 is presented the slow manifold of the Hindmarsh-
Rose 85’model determined with the osculating plane method.
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Figure 4. Slow manifold with the osculating plane method
(proposition 1).

With the proposition 2 the slow manifold is provided
with the use of the collinearity condition between both in-
stantaneous velocity vector

−→
V (t) and instantaneous accel-

eration vector −→γ (t).
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Figure 5. Slow manifold with the collinearity condition
(proposition 2).
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Figure 6. Slow manifold with the tangent linear system
approximation (proposition 3).

The smallness of the parameter ε is still responsible
for the great similarity between the Fig. 4 and Fig. 5. But
in this case the presence of the exponential function h (x)
does not allow neglecting totally the first and the second
components of the vector product (11).



The Fig. 6 presents the slow manifold of the Hindmarsh-
Rose 85’model obtained with the tangent linear system ap-
proximation.

Nevertheless, an explicit analytical equation of the slow
manifold of model (18) has been provided in three differ-
ent manners increasing each time the quality of the ap-
proximation till obtaining the whole this slow manifold.

Here again, the new criterion of attractivity of mani-
folds which consists in considering the sign of the total
derivative of the slow manifold equation, makes it possi-
ble to show that the slow manifold is attractive for the tra-
jectory curve ~X (t), integral of the dynamical system. So,
it delimits stability domains of the phase space for these
trajectories.

4. Discussion

In this work the use of the Mechanics formalism and of the
instantaneous acceleration vector provided new alternative
methods of determination of the slow manifold equation
of (S-FADS) with a small parameter ε in one of the right-
hand-side component of its instantaneous velocity vector
field:

• the osculating plane method, i.e., the coplanarity be-
tween the instantaneous velocity vector

−→
V , the in-

stantaneous acceleration vector −→γ and the vector−−→
IM formed starting from a fixed point of such dy-
namical systems and any point M,

• the collinearity condition between the instantaneous
velocity vector

−→
V , the instantaneous acceleration vec-

tor −→γ .

• the tangent linear system approximation, i.e., the
coplanarity condition between the instantaneous ve-
locity vector

−→
V (t) and the slow eigenvectors trans-

formed into a real analytical equation. This method
need not calculating eigenvectors.

The attractivity criterion made it possible to establish
the attractive feature of the slow manifold and so defined
stability domains of the phase space for the trajectories
curves, integral of such dynamical system.

The study of both Hindmarsh-Rose models in a kind of
“comparative manner” allowed to show that the presence
of an exponential function h (x), more realistic than the
linear one, doesn’t prevent from determine the analytical
equation of the slow manifold.
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