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ABSTRACT We have developed a novel, fully
automatic method for aligning the three-dimensional
structures of two proteins. The basic approach is to
first align the proteins’ secondary structure elements
and then extend the alignment to include any equiva-
lent residues found in loops or turns. The initial
secondary structure element alignment is determined
by a genetic algorithm. After refinement of the second-
ary structure element alignment, the protein back-
bones are superposed and a search is performed to
identify any additional equivalent residues in a con-
vergent process. Alignments are evaluated using in-
tramolecular distance matrices. Alignments can be
performed with or without sequential connectivity
constraints. We have applied the method to proteins
from several well-studied families: globins, immuno-
globulins, serine proteases, dihydrofolate reductases,
and DNA methyltransferases. Agreement with manu-
ally curated alignments is excellent. A web-based
server and additional supporting information are
available at http://engpub1.bu.edu/;josephs. Proteins
2000;38:428–440. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Proteins spontaneously fold into intricate three-dimen-
sional (3D) structures. The advances of techniques such as
X-ray crystallography and nuclear magnetic resonance
have brought about the determination of more than 10,000
protein structures—a number that is increasing rapidly
(http://www.rcsb.org/pdb). Ever since there were more
than a handful of 3D structures, comparing or aligning
them has been an important technique for elucidating
fundamental principles of protein structure, function, and
evolution.1 Structure alignment involves establishing
equivalencies between residues in two proteins based on
their 3D coordinates. A structure alignment is essentially
a list of residue pairs from two proteins that should
superpose closely after one protein is translated and/or
rotated rigidly.

Generally speaking, structure alignment has two goals.
The first is to determine whether two proteins share the
same fold. Strong structural similarity between two pro-
teins is commonly interpreted as functional similarity and
evolutionary relatedness.2 Protein structures are usually
more conserved than protein sequences.3–5 Moreover, un-
related sequences can converge to the same fold.6 As more
protein structures are determined, large-scale all-against-

all structure alignment projects have become useful tools
for understanding the relationships between protein se-
quence, structure, and function.7–9

The second goal of structure alignment is to determine
the exact similarities and differences between two proteins
by delineating structurally equivalent pairs of residues.
With massive sequence information becoming available,
structure prediction algorithms such as homology model-
ing and threading are gaining increasing attention. Such
techniques learn from known structures, called templates,
to infer the structure of a new sequence. Structure align-
ment is an integral part of many structure prediction
algorithms. Template protein structures are aligned to
determine a common conserved core that will serve as the
basis for the modeled structure. Once the structure of the
new protein is solved, it is aligned to the predicted model.
In this manner, structure alignment is used as a “gold
standard” for testing structure prediction algorithms.

A large number of structure alignment algorithms have
previously been developed.1–31 These methods can be
classified according to three characteristics. The first
characteristic is the method’s target function, which pro-
vides a quantitative measure of the quality of an align-
ment. Some methods compare the distance matrices of two
3D structures and try to minimize the differences in
intramolecular distances of aligned substructures.11,12,20

Other methods rigidly superpose one protein on the other
and try to minimize the distances between paired resi-
dues.23,25,26

The second characteristic is the search algorithm used to
find the target function’s optimum value. Dynamic pro-
gramming has been a popular choice because of structure
alignment’s apparent parallel with sequence align-
ment.12,23,25,27 Other commonly used search strategies
include Monte Carlo methods, or simulated annealing,12,28

genetic algorithms,23,26 branch-and-bound algorithms,24

and geometric hashing.10

The third characteristic is whether or not the method
imposes sequential constraints on the alignment. Sequen-
tial constraints substantially decrease the search space,
but not without possible sacrifices. Although such con-
straints can enhance the algorithm’s speed and precision
in some cases, they may exclude the optimum alignment if
the equivalent substructures in the two proteins are not
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connected in the same order. Some search algorithms,
such as dynamic programming, cannot be used without
sequential constraints.

If we consider structure alignment to be a computational
approach to aligning two proteins as if they were geometric
objects in 3D space, the problem can be considered solved.
Such an approach does not, however, address the biologi-
cal relevance of the resulting alignment. This is an espe-
cially important issue when structure alignments are
treated as “gold standards” for testing sequence alignment
and structure prediction algorithms. This problem has not
yet been resolved. Feng and Sippl32 discovered that for
many protein pairs, distinct alignments could be gener-
ated that are indistinguishable in terms of number of
equivalent residues and root mean square error of superpo-
sition. Clearly, two alignments with distinct residue equiva-
lencies cannot both be correct in the biological sense.
Gerstein and Levitt25 were also aware of the importance of
this problem, and made great efforts to compare their
results with manually curated alignments when testing
their structure alignment algorithm. Because the target
functions used by most structure alignment algorithms
are only measures of the similarity between two geometric
objects, target function optimization does not necessarily
guarantee that the selected equivalencies correspond to
residues that are conserved for biological reasons.

We decided to develop a structure alignment algorithm
with the goal of generating high-quality, biologically mean-
ingful alignments. It is understood that protein structures
are more conserved in the cores than in exposed loops and
turns, with the exception of those loops and turns involved
in active sites. Therefore, it is our philosophy to first align
the proteins’ cores, as represented by their secondary
structure elements (SSEs). This is achieved by minimizing
the difference of distance matrices using a genetic algo-
rithm. Once this is done, we extend the SSE alignment to
include any positions in loops or turns deemed equivalent
in a convergent process.

The algorithm is implemented in a computer program
called KENOBI. The program has been tested on eight
protein families that are highly representative, and it has
proven to be robust. Specifically, KENOBI is able to
generate high-quality alignments that are in complete
agreement with manually curated alignments, as well as
with evolutionarily conserved residue equivalencies proven
by experimental results.

RESULTS
Robustness of the Algorithm

Because the genetic algorithm is heuristic and stochas-
tic, it was important to determine whether the algorithm is
able to find global optima. We aligned tryptophan syn-
thase (1WYSA33), a large (ba)8 barrel with eightfold
symmetry, with itself 100 times using different random
number generator seeds. KENOBI found the correct align-
ment for all 100 seeds.

Streptavidin and avidin are two very distantly related
biotin-binding proteins. Both have eight anti-parallel
b-strands, which curve and twist to form a barrel with one

biotin molecule bound in the center (1STP,34 and 1AVE35).
With sequential constraints, these proteins exhibit four-
fold symmetry. Without sequential constraints, the two
molecules can also be aligned upside-down. We aligned
streptavidin and avidin both with and without sequential
constraints. With constraints, KENOBI found the global
optimum for all 100 seeds; without constraints, KENOBI
found the global optimum for 84 of 100 seeds, with the
remaining 16 seeds settling in local optima. The local
optima include upside-down alignments, permuted align-
ments, and permuted upside-down alignments.

Fibronectin is a glycoprotein involved in cell adhesion. It
is composed of hundreds of fibronectin type III domains,
each composed of a three-stranded and a four-stranded
sheet compacted together to form a compressed b-barrel.
This is also a tough example, because there are many local
optima that can trap structure alignment algorithms. The
3D structures of domains 7, 8, 9, and 10 of fibronectin have
been solved (1FNF36). We arbitrarily selected domain
seven as the reference structure and aligned domains 8, 9,
and 10 to it (Fig. 1a). With sequential constraints, KENOBI
found the global optimum for each alignment for 100 of 100
different seeds. Without the constraints, KENOBI found
the global optimum for 97 to 100 of 100 different seeds.

The results of these three tests are detailed in Table I. In
summary, we have an algorithm that is not sensitive to the
stochastic nature of the genetic algorithm and is robust
against internal repeats that can lead to a large number of
suboptima.

Alignment Quality

Because one of the two main applications of a structure
alignment algorithm is to create a “gold standard” for
sequence alignment and structure prediction methods, we
set out to test the quality of alignments generated by
KENOBI. Convinced by Gerstein and Levitt25 that it is
important to compare automatic alignments against manu-
ally curated alignments, we chose to align the same three
protein families as in reference 25: the all-a globins,37 the
all-b immunoglobulins,38 and the a/b dihydrofolate reduc-
tase family.39 In addition, we also chose the all-b protease
family for which Greer40 determined the manual align-
ments. For each family, one protein structure was arbi-
trarily selected as the reference and the other structures
aligned to it one at a time using KENOBI. Five situations
can arise when a KENOBI alignment is compared to a
manual alignment:

1. A residue can be nonpaired in both the manual and the
KENOBI alignment.

2. A residue can be nonpaired in the manual alignment
but paired in the KENOBI alignment.

3. A residue can be paired in the manual alignment and
nonpaired in the KENOBI alignment.

4. A residue can be paired with the same residue in the
two alignments.

5. A residue can be paired with different residues in the
two alignments.
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Only the fifth situation is considered to be a discrepancy
between the two alignments and it will be the focus of the
discussion below for each of the four families.

For each KENOBI alignment, we repeated 100 runs

using different random number generator seeds. The
results for the four families are summarized in Table II.
Generally speaking, KENOBI assigned fewer equivalent
pairs than the manual methods did in the regions deemed

Fig. 1. Superposed 3D structures according to structure alignments.
a–c: KENOBI alignments. Thick lines indicate alignable positions; thin
lines indicate unalignable positions. d: A DALI alignment (see text in the
Discussion section). a: Structure alignment of four fibronectin domains.
1FNF7 (red) served as the reference structure, and 1FNF8 (yellow),
1FNF9 (blue), and 1FNF10 (green) were aligned to it. b: Two aligned DNA
methyltransferases, 1BOO (blue) and 2ADMA (cyan). The catalytic
domains of these two proteins share very similar 3D structures, as
indicated by the thick lines, despite different topological connections. c:
Structure alignment of a human protease (1TRNA, yellow) with a viral

protease (1KXF, red). The amino acids that form the Asp-His-Ser catalytic
triad of each protein, shown here in ball-and-stick form, align very well. d:
Portion of protease structures 1SGT (yellow) and 1KXF (cyan) super-
posed based on alignment generated by the DALI server. DALI aligned
1SGT residues 211–214 with 1KXF residues 251–254. The aligned
residue pairs are labeled in the same color with a line drawn between their
alpha carbons. The distances between aligned residues are: 211T–251G,
6.8 Å; 212F–252K, 3.1 Å; 213A–252T, 4.8 Å; and 214S–254I, 9.6 Å.
These images were generated using MOLSCRIPT68 and RASTER3D.69

430 J.D. SZUSTAKOWSKI AND Z. WENG



structurally equivalent by manual methods. On visual
inspection of the alignments and superposed 3D struc-
tures, we discovered that the “missing” residue pairs were
always excluded by the nearest neighbor and stretch-of-
four constraints we impose on all residue pairs (see
Methods).

Globins

For the globin family, we chose the alpha chain of
human hemoglobin (2HHBA41) as the reference structure,
and aligned six other globins to it (2HHBB, 5MBN,42

1ECD,43 2LHB,44 1LH1,45 and 2HBG46). Five of the six
globin alignments converged to the global optima for all
100 seeds, whereas the sixth converged for 90 seeds. The
only discrepancy between the KENOBI alignments and
the manual alignments is a helix of hemoglobin 1LH1
(PELQAHAGKVFKLVYE, positions 58–73). KENOBI
aligned this helix with positions 56–71 of the representa-
tive structure 2HHBA. The manual alignment pairs them
with positions 53–68 of 2HHBA, approximately one helix
turn away. After reexamining our alignment, we realized
that for this pair of proteins, the KENOBI alignment
actually had a slightly better similarity score and a
slightly smaller root mean square deviation (RMSD) than
the manual alignment. We then aligned 1LH1 with each of
the other globins. The only pairwise alignment that agreed
with the manual alignment was 1LH1 with 2HBG; all
others contained the shift described above.

Immunoglobulins

Aligning an immunoglobulin light-chain variable do-
main (7FABL44) with an immunoglobulin constant domain
(1REIA45) is considered a difficult case by Gerstein and
Levitt.25 In fact, the basic version of their algorithm could
not align this pair correctly, indicated by mismatched
disulfide bonds. Only after using Cb coordinates could the
correct alignment be achieved. We also found this align-
ment to be a difficult case. Only 85 of 100 runs achieved the
correct alignment, whereas 14 of the remaining runs
resulted in alignments that were shifted by two positions,
and the last run resulted in an alignment that was shifted
by one position. The shifted alignments were clearly
inferior to the correct alignment, in terms of similarity
score, total number of residue pairs, and RMSD after rigid
fitting over the residue pairs.

Dihydrofolate reductases

All three pairwise alignments of the dihydrofolate reduc-
tase family (1DHFA,47 8DFR,48 4DFRA,49 and 3DFR49)
converged to the global optima for all 100 seeds. Only one
discrepancy was observed between the manual and
KENOBI alignments, located between residues
P21W22N23# of 4DFRA and residues P23W24P25P26 of
1DHFA. The manual alignment assigned P21, W22, and
N23 of 4DFRA to P23, W24, and P25 of 1DHFA, respec-
tively. KENOBI aligned P21, W22, and N23 of 4DFRA
with W24, P25, and P26 of 1DHFA, respectively. In terms
of residue properties, the manual alignment makes sense.
Because both P and W are rarely observed residues, it is
very favorable to align PW with PW. After double checking
the KENOBI alignment, however, we confirmed that the
KENOBI alignment was actually correct. There is no
ambiguity in the assignment of these two residue pairs.
Superposition of the two proteins based on the manually
determined residue pairs results in the same alignment
generated by KENOBI in the region in question. The

#Residues are denoted using one letter code followed by the residue
number in the original Protein Data Bank file. For example, P21W22
means proline at position 21 and tryptophan at position 22.

TABLE I. Convergence Data for Five Structure
Alignments†

Alignment

Number of Correct Alignments

With constraints W/o constraints

1WYSA to 1WYSA 100 100
1STP to 1AVEA 100 80
1FNF7 to 1FNF8 100 97
1FNF7 to 1FNF9 100 100
1FNF7 to 1FNF10 100 99
†To test KENOBI’s ability to converge to optimal alignments, several
pairs of proteins were aligned both with and without sequential
constraints using 100 different random number generator seeds.
These particular proteins were chosen because they contain internal
repeats that can trap structure alignment algorithms in locally
optimal alignments.

TABLE II. Convergence Data for Structure Alignments of
Four Protein Families†

Alignment Number of correct alignments

Globins
2HHBA 2HHBB 100
2HHBA 5MBN 100
2HHBA 1ECD 100
2HHBA 2LHB 100
2HHBA 1LH1 90
2HHBA 2HBG 100

Immunoglobulin
1REIA 7FABL2 85

Dihydrofolate reductases
1DHFA 8DFR 100
1DHFA 4DFRA 100
1DHFA 3DFR 100

Serine proteases
2CHA 5PTP 100
2CHA 1EST 100
2CHA 2KAIAB 100
2CHA 3RP2A 100
2CHA 1SGT 100
2CHA 1TON 100

Representative proteases
1TRNA 2KAIAB 100
1TRNA 1SGT 100
1TRNA 1HAVA 100
1TRNA 1TAL 100
1TRNA 1KXF 98

†Each alignment was performed with 100 different random number
generator seeds and was compared to manually curated structure
alignments from the literature.

PROTEIN STRUCTURE ALIGNMENT 431



situation is particularly interesting if we compare the
1DHFA-3DFR structure alignment with the 1DHFA-
4DFRA alignment. If we consider the regions bordered by
a conserved glycine and a conserved leucine residue (G17
and L27 in 1DHFA, G15 and L24 in 4DFRA, and G14 and
L23 in 3DFR), 1DHFA has a 10-residue-long loop and both
4DFRA and 3DFR have 9-residue-long loops. 1DHFA and
3DFR have similar sequences in this region, with minor
differences at the end of the loop. 4DFRA’s sequence at this
region differs greatly from that of 1DHFA, especially at
the beginning of the loop. In particular, a glycine (G20 in
1DHFA and G17 in 3DFR) is replaced by an asparagine in
4DFRA. The structure alignments correctly reflect these
differences.

Proteases

The KENOBI alignments for the seven proteases
(2CHA,50 5PTP,51 1EST, 52 2KAIAB, 53 3RP2, 54 1SGT, 55

and 1TON56) completely agree with the manual align-
ments generated by Greer. Each alignment converged for
all 100 seeds.

Difficult Cases

In the course of developing our algorithm, we needed
challenging test cases. Knowing that b-strands are usually
more difficult to align than a-helices, we chose to study the
trypsin-like protease superfamily, which according to
SCOP57 is composed of four families. We arbitrarily picked
six proteins across these four families: two from the
prokaryotic protease family (1SGT and 1TAL58), two from
the eukaryotic protease family (2KAIAB and 1TRNA59),
one from the viral protease family (1KXF60), and one from
the 3C cysteine protease family (1HAV61). All of these
proteins share a common fold, with the proteolytic active
site located at the crevice between two antiparallel b-bar-
rels. Although the b-strands forming the core more or less
exist in all six proteins, they are distorted, shifted, short-
ened, or broken in some members (especially in 1HAV and
1KXF), making these structure alignments very difficult.
For these cases, there are no manually curated alignments
to serve as references. Nevertheless, the KENOBI align-
ments agree well with published functional alignments,
62,63 with all of the active site residues perfectly aligned in
all six alignments. The overall convergence of 100 runs
with different random number seeds is summarized in
Table II. Nearly all of the runs converged to alignments
with active site positions paired correctly, as illustrated for
1KXF and 1TRNA in Figure 1c.

To test the version of the program without sequential
constraints, we selected two DNA methyltransferases:
M.PvuII (1BOO64), and M.TaqI (2ADMA65). M.PvuII trans-
fers a methyl group from S-adenosyl-L-methionine
(AdoMet) to the C5 atom of a cytosine base, while M.TaqI
transfers a methyl group from AdoMet to the N4 atom of a
cytosine base. Although these two proteins exhibit no
sequence similarity (BLAST66 computes an E value . 10),
their catalytic domain cores have very similar 3D struc-
tures. Each of these catalytic domains is composed of a
seven-stranded twisted b-sheet surrounded by six a-heli-

ces, three on each side. Seven of the eight strands point in
the same direction, forming the bottom of the substrate
binding cleft. Each of these catalytic domains represents a
portion of a larger protein; M.PvuII has 163 residues, 8
strands, and 8 helices, and M.TaqI has 421 residues, 13
strands, and 9 helices. Moreover, the secondary structure
elements in the conserved cores of these two proteins are
not in the same order. As shown in Figure 2, these SSEs
are permuted. This pair of proteins poses a challenge to
structure alignment algorithms. The structure alignment
produced by KENOBI is in complete agreement with
biological findings.64 The structural superposition of the
aligned proteins is shown in Figure 1b. Of 100 random
seeds, 74 produce the alignment as shown in Figure 1b,
and 6 more fail to align the region M.PvuII 28-36 with
M.TaqI 83–91 but are otherwise correct.

DISCUSSION

We have developed a structure alignment algorithm
that is conceptually simple and requires no parameter
fiddling. We have tested the algorithm on multiple criteria:
convergence to the global optimum, the ability to produce
biologically meaningful alignments, the performance for
distantly related proteins, and the performance for per-
muted structures. The results above are more than satis-
factory. Specifically, the algorithm has been shown to
generate highly accurate, biologically relevant alignments
over a broad range of protein families.

Several considerations went into the design of the
algorithm to favor biologically meaningful alignments. By
dividing the algorithm into two stages, we focus first on
aligning the protein cores, as represented by SSEs, which
tend to be more conserved than loops and turns. Treating
the proteins as collections of SSEs speeds up the genetic
algorithm by substantially decreasing the search space. In
addition, this ensures that every SSE is treated as an
intact unit. This prevents biologically incorrect alignments
in which two fragments from one SSE are aligned with
fragments from two different SSEs in the other protein. In
the algorithm’s second stage, additional residue equivalen-
cies are added only if these residues are aligned in the
context of stage 1 equivalencies. Finally, every residue
pair is subject to three constraints. First, paired residues
must be each other’s nearest neighbors. Second, paired
residues must be separated by less than some threshold
distance. Third, a pair of aligned residues must exist
within a stretch of four or more consecutive aligned pairs.
These constraints were designed to exclude residue pairs
that may be close in space but otherwise are not equiva-
lent, e.g., if two protein backbones cross each other when
superposed, a pair of residues may have exactly the same
3D coordinates and yet not be biologically equivalent.

Another important consideration was the choice of tar-
get function. We use the “elastic similarity score” devel-
oped by Holm and Sander.20 This function uses intramo-
lecular distance matrices to compare substructures of two
proteins (see Methods). It is possible to align two proteins
by searching their distance matrices for similar submatri-
ces. Treating the proteins as collections of SSEs provides a
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biologically meaningful way to search these matrices for
areas of similarity.

The genetic algorithm is well suited to this application,
given our representation of proteins as collections of SSEs.
We found the genetic algorithm to be fast and efficient,
capable of generating correct alignments from a small
number of randomly generated SSE alignments (100 by
default). The genetic algorithm is capable of both coarse
and detailed manipulations of the alignments. The genetic
algorithm’s speed is in large part a result of the powerful
recombination operator, which allows for large-scale ex-
changes of information between pairs of alignments (see
Methods).

There exist many structure alignment tools and struc-
ture classification databases. SCOP,7 CATH,51 and MMDB
(built with the VAST algorithm30,31) are the leading
protein classification databases. They categorize proteins
into families according to structures and/or functions. Of
these, only MMDB provides detailed structure align-
ments. DALI is a well-known structure alignment pro-
gram available as a web-based server. Users can query a
structure against a protein structure database or align two
specific structures. Although VAST and DALI focus on
detecting remote structural similarities, KENOBI’s aim is
to generate high-quality, biologically meaningful residue
equivalencies. The difference in these goals is apparent
when comparing KENOBI and DALI alignments of the
same protein pairs. Alignments generated by DALI typi-
cally include more aligned residues and subsequently have
higher RMSDs than KENOBI alignments.

Two cases in particular illustrate the differences be-
tween KENOBI and DALI. The first of these is the
alignment of the two DNA methyltransferases (1BOO and

2ADMA). The DALI alignment, generated by the DALI
e-mail server, correctly aligns strands 3–7 and helices C–E
but does not align the permuted portions of the structures,
namely, strands 1 and 2 and helices A and Z (Fig. 2). This
is to be expected because the DALI server performs only
sequentially constrained alignments.

The second case involves the alignment of two distantly
related serine proteases, 1SGT and 1KXF. Although the
DALI alignment correctly matches the Asp-His-Ser cata-
lytic triads, it also includes several questionable equivalen-
cies. For example, DALI aligns 1SGT residues 211–214
with 1KXF residues 251–254. When the structures are
superposed according to the DALI alignment, close inspec-
tion of this region reveals that a helical region in 1SGT
(residues 221–214) has been aligned with an extended
region in 1KXF (residues 251–254) and the paired residues
are in fact quite distant from each other (Fig. 1d). These
extraneous equivalencies and others like them are ex-
cluded by the strict nearest neighbor, stretch-of-four, and
distance constraints built into KENOBI. It should be noted
that MMDB does not list the protein pairs from either of
these cases as structural neighbors; therefore, it is not
possible to compare KENOBI and VAST/MMDB for these
cases.

The current version of KENOBI faces several limita-
tions. Because of the first stage SSE alignment, KENOBI
is unable to align small proteins or peptides that do not
have any secondary structures. KENOBI currently recog-
nizes two types of secondary structure elements: a-helices
and b-strands as calculated by DSSP. We are in the
process of adding a third type of SSE that can be assigned
by the user. The user-defined SSEs could be applied to
conserved tight turns or other nonsecondary-structure

Fig. 2. Topology diagrams of two DNA methyltrans-
ferases, M.TaqI (2ADMA) and M.PvuII (1BOO). Strands
are drawn as arrows, and helices as cylinders. These
diagrams illustrate the circular permutation of the cata-
lytic domains of these two proteins. For clarity, only those
SSEs aligned by KENOBI are shown, with the exception
of helix B (shaded), which was not aligned by KENOBI.
SSE labels are those from Schluckebier et al.70
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regions such as cysteine-rich motifs. KENOBI’s conver-
gence, although generally quite good (85% or more) is not
perfect and could be improved with better initial popula-
tions and smarter operators. For example, we could take
advantage of the graph isomorphism approach by Grindley
and colleagues19 and the “3D-lookup” approach by Holm
and Sander24 to rapidly find seed SSE alignments. Finally,
although KENOBI is sufficiently fast for moderate num-
bers of pairwise alignments, it is not fast enough to allow
for the 10,000 or so comparisons needed to query a protein
structure against the Protein Data Bank. We hope that by
parallelizing the KENOBI code, we can improve its perfor-
mance such that it could be used for efficient database
searching.

METHODS
Stage 1: Target Function

It is critical that stage 1 of the algorithm results in the
correct pairing of SSEs. We have adopted the “elastic
similarity score” developed by Holm and Sander,20 which
is based on intramolecular distances.* It is defined as (1)

S 5 5 O
i 5 1

L O
j 5 1

L Su 2
udij

A 2 dij
Bu

d*ij
De 2 ~d *ij /a!2, i Þ j

u, i 5 j
6 ,

where i and j label pairs of matched residues (e.g., i(iA, iB)
is the ith residue pair, with the iA

th residue in protein A
paired with the iB

th residue in protein B); L is the total
number of residue pairs; dij

A is an element of the distance
matrix of protein A, denoting the distance between the iA

th

residue and the jA
th residue in protein A; likewise dij

B

denotes the distance between the iB
th residue and the jB

th

residue in protein B; d*ij is the average of dij
A and dij

B; u is a
constant similarity threshold (set to 0.20); and e 2 ~d *ij /a!2 is
an envelope function (a 5 20 Å) designed to reduce the
contribution of distant pairs to the overall score. Residues
that are not aligned do not contribute to the similarity
score S.

Equation 1 helps balance structure alignment’s two
main objectives: to simultaneously maximize the number
of equivalent residue pairs and minimize the distance
between these pairs. Equation 1 can be easily explained
using a simple example. Assume residues 1, 2, and 3 of
protein A are aligned with residues 1, 2, and 3 of protein B,
respectively (L 5 3 in Equation 1). If they align well, we
would expect d12

A to be similar to d12
B , d13

A to be similar to
d13

B , and d23
A to be similar to dB

23. Then the similarity score
S would be slightly smaller than 9u.

Stage 1: Secondary Structure Elements (SSEs)

Similarities in the structures of two proteins can be
detected by similarities in their distance matrices. In this
sense, the structure alignment problem becomes a search

for regions of similarity shared by the two distance matri-
ces. This search space is so large that current computing
power cannot exhaustively enumerate all possible struc-
ture alignments between two proteins longer than 25
residues. By treating each protein as a collection of SSEs,
two protein structures can be aligned by searching for the
“best” set of SSE pairings, which we call SSE alignments.
This also dramatically reduces the search space. If three
a-helices from protein A were similar to three a-helices
from protein B, the distance matrices of these two proteins
would contain three similar submatrices along the main
diagonals, one for each helix. In addition, there would
appear in each distance matrix a similar off-diagonal
submatrix corresponding to the contact patterns between
the three helices (Fig. 3). Allowing SSEs to align only with
other SSEs of the same type further reduces the search
space.

Protein structures are provided to the program in the
form of Protein Data Bank files. SSEs are first calcu-
lated using DSSP,67 and then subjected to a smoothing
algorithm (http://bmerc-www.bu.edu/needle-doc/new/
dssp-progs.html). Residues that are neither helix (“H”)
nor strand (“E”) are converted to loops (“L”). Secondary
structure elements with fewer than four residues are
also converted into loops. The beginning and ending
residue numbers of an SSE define fixed boundaries that
can neither be changed nor traversed by the genetic
algorithm.

*Because the Ca atom is at the center of the residue and its
coordinates are almost always adequate for representing the residue’s
position, our algorithm uses only Ca atoms and ignores all other
atoms.

Fig. 3. An example intramolecular distance matrix. The three subma-
trices along the main diagonal (vertically lined boxes) represent three
SSEs. Each submatrix contains the intramolecular distances for the
residues in one SSE. The three off-diagonal submatrices (diagonally lined
boxes) represent the contact patterns between the three SSEs.
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Stage 1: The Genetic Algorithm

It is computationally prohibitive to search all possible
SSE alignments, including the detailed residue pairings,
exhaustively. Instead, we use a genetic algorithm to
search for the optimal solution to Equation 1 heuristically.
The genetic algorithm’s basic scheme is as follows:

1. Generate an initial population of possible SSE align-
ments.

2. Alter each alignment using the “mutate,” “hop,” and
“swap” operators.

3. Carry out “recombination” between randomly assigned
pairs of alignments using the “crossover” operator.

4. Accept or reject the alterations made to each alignment.
5. Exit if certain conditions are met. Otherwise go to step

2.

Initial population

Each SSE alignment is represented as lists of paired
SSEs (Fig. 4). Every SSE is paired with an SSE of the same
type from the other protein. If the two proteins have an
unequal number of SSEs of a given type (e.g., protein A has
four helices, and protein B has two helices), the protein
with fewer SSEs is padded with null elements. An SSE
paired with a null element is in effect not aligned and does
not contribute to the alignment’s similarity score, as
defined by Equation1. We require an SSE pair to have four
or more residue pairs. The initial length of each SSE pair is
constrained by the secondary structure elements’ fixed
boundaries and is determined randomly. If two SSEs of
unequal length are paired, the genetic algorithm selects an
equal number of residues from each SSE.

Because the SSE alignment search space is very large
(see Discussion), we bias the initial population toward SSE
pair doublets (two SSEs from one protein paired with two
SSEs from the other protein) that score favorably accord-
ing to Equation 1. The similarity scores of all SSE pair
doublets are first calculated. Initial alignments are then
generated by selecting SSE pair doublets from this list
until all SSEs have been chosen. Doublets are selected
with probability (2)

Pk 5
eSk

O
k

eSk
,

where Sk is the score of the kth doublet as calculated using
Equation 1. This prescreening for high-scoring doublets
biases the initial alignments toward better guesses. The
number of alignments (population size) is constant and set
to 100 by default. Before we start to alter an alignment, we
record all key information necessary to return it to its
unaltered state.

The “mutate” operator

Mutation provides a method to fine-tune the individual
SSE pairs. All mutations are constrained by the fixed
boundaries of the two SSEs and the requirement that
every SSE pair must contain at least four residue pairs.
Mutations can increase the number of residue pairs by
one, decrease the number of residue pairs by one, or shift
one SSE relative to the other by one position. The exact
nature of a mutation is determined randomly and accom-
plished by changing the working boundaries of the paired

Fig. 4. a: Cartoon representation of an SSE. The invariant
boundaries, residues number 1 and 13 in this example, are
calculated by DSSP and cannot be changed by the genetic
algorithm. The genetic algorithm can, however, adjust the
variable boundaries, which in this example are located at
residues number 4 and 11. b: An example of an SSE pairing.
The regions with diagonal lines (residues 1 to 10, and 129 to 219
in the SSEs from proteins A and B, respectively) represent the
aligned portions of the two SSEs. c: An example SSE align-
ment. Each box represents an SSE. This example consists of
two helix pairings, and three strand pairings. Note that protein
B has been padded with a null element, aligned here with
strand 2 from protein A. This padding was necessary because
protein A has three strands, whereas protein B has only two.
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SSEs. The default mutation probability for every SSE pair
is 3%.

The “hop” operator

SSE pairs are allowed to “hop” along the alignment. If an
alignment is selected for hopping, two SSE pairs of the
same type from one protein are selected. The first SSE pair
is chosen with probability determined using Equation 2.
The second is chosen blindly from the remaining SSE pairs
of the same type as the first. Once chosen, the two SSEs
trade places (Fig. 5). When necessary, the resulting new
pairs are trimmed to give the paired SSEs equal lengths.
The default hop probability for each alignment is 5%.

The “swap” operator

Each alignment is subject to the swap operator with
equal probability (by default 5%). When an alignment is to
be swapped, it is randomly assigned a partner from the
rest of the population. A swap between two alignments
consists of a wholesale trade of all of the SSE pairs of one
type in one alignment for those of the same type in the
other alignment. For example, if alignments X and Y were
chosen to swap with each other, alignment X would trade
all of its b-strand pairs for all of alignment Y’s b-strand
pairs (Fig. 6). This exchange is most productive for cases in
which one alignment has well aligned a-helices and the
other has well aligned b-strands

The “crossover” operator

Every alignment is randomly assigned a crossover part-
ner from the rest of the population. The crossover operator
then carries out several actions. First, the SSE pairs in the
a-helix and b-strand lists are sorted. Next, a crossover
point is randomly assigned for each list. The two align-
ments then exchange all SSE pairs on one side of the
crossover points (Fig. 7). The helix and strand lists are
then repaired to ensure that they contain exactly one copy
of each SSE from each protein.

Reevaluation of the population

Each altered alignment is evaluated according to Equa-
tion 1. The contribution of each SSE pair to the total

similarity score is also calculated. The alignment’s total
score is compared to its score before the alteration. If the
alignment’s current score is greater than its previous
score, all changes made to the alignment are accepted. If
the alignment’s current score is less than its previous
score, the alignment is returned to its previous condition
using the recorded information. After each round, the
program calculates the average score for the population.
The program also maintains a list of the 10 best align-
ments seen and the best score seen at any point in the run.

Exit the Genetic Algorithm

The genetic algorithm exits if it reaches a preset number
of rounds, or the best score remains unchanged for 20
consecutive rounds, or the average score for the population
is equal to the best score seen.

Stage 1: Refine the Best Alignment Generated by
the Genetic Algorithm

After completion of the genetic algorithm, the alignment
with the best score is refined. The SSE pairs that make a
negative contribution to the overall score are eliminated
from the alignment. The remaining pairs are subjected to a
series of small alterations in an attempt to improve the
score of the overall alignment. First, the SSEs in each pair
are shifted incrementally up to four positions in each
direction. Once the optimum shift has been determined,
SSEs are extended in each direction in an attempt to
further improve the alignment’s score.

In some cases, the best alignment generated by the
genetic algorithm and refinement procedure has correct
SSE pairings, but incorrect residue alignments within
some SSE pairs. Such incorrect pairings are usually
shifted by two positions if they are strands or three
positions if they are helices. We have designed a “shake”
operator to tackle this problem. The “shake” operator
randomly shifts the relative position of every SSE pairing
by zero to three positions in either direction. The align-
ment is then reevaluated. If the alignment’s new score is
better than its previous score, the adjustments are ac-
cepted. If the alignment’s current score is worse than its

Fig. 5. The “hop” operator. a: First,
two SSEs of the same type from one
protein are selected (helices 1 and 3
from protein A). b: These two SSEs
then exchange places in the align-
ment. The resulting new SSE pairs are
then trimmed if necessary (not shown).
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previous score, the alignment is returned to its previous
condition. This process is repeated a set number of times
(5,000 by default). The “shake” operator is computation-
ally expensive and can be turned off for less difficult
alignments.

Stage 2: Extend the Alignment to Nonsecondary
Structure Regions

Using the residue pairings generated at stage 1, the two
protein structures are rigidly superposed using a least-
squares fit algorithm to minimize the RMSD between the
aligned residue pairs. We then search the protein back-
bones for additional equivalent residue pairs, especially in
non-SSE regions. We recruit a residue pair if the paired
residues are each other’s nearest neighbors and are sepa-
rated by a distance less than some threshold. Any equiva-
lent pair that does not occur in a stretch of at least four
consecutive pairs is thrown out to eliminate spurious
equivalencies. The combination of nearest-neighbor and
stretch-of-four criteria turns out to be surprisingly strict.
The distance threshold is set to a large value (by default 10
Å) to exclude only those pairs that are obviously not
equivalent. The nearest neighbor and stretch-of-four crite-
ria exclude other incorrect pairs. This cycle of RMS fitting,

recruitment, and pruning continues until the alignment
converges.

Computer Implementation

The algorithm has been implemented in a C11 program
called KENOBI. Sequential constraints can be turned on or
off from the command line. The hop and crossover operators
each have sequentially constrained and nonconstrained
modes. The constrained mode functions as described above
with the added requirement that all operations maintain
sequential ordering of the SSEs. All parameters can also be
adjusted from the command line. To test KENOBI’s speed,
we performed an easy alignment of two globins, 2HHBA (141
residues, 6 helices) and 2HHBB (146 residues, 6 helices) and
a difficult alignment of two DNA methyltransferases, 1BOO
(163 residues, 8 strands, and 8 helices) and 2ADMA (421
residues, 13 strands, and 9 helices) on several different
computer systems. The results, summarized in Table III,
demonstrate that KENOBI is quite fast. KENOBI aligned
the globins in 47 seconds without sequential constraints on a
personal computer. With sequential constraints, KENOBI
required only 21 seconds to align the globins. Even the large
methyltransferases required only a few minutes to align.

Fig. 6. The “swap” operator. a: Two
SSE alignments are selected to swap.
SSEs initially in the upper alignment
appear with diagonal lines. b: In this
example, the strand pairs from the
upper alignment are swapped with the
strand pairs from the lower alignment.
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Fig. 7. The “crossover” operator.
a: First, two SSE alignments are se-
lected to crossover. SSEs initially in
the upper alignment appear with diago-
nal lines. Crossover points, repre-
sented here as dashed vertical lines,
are then assigned to both the helix and
strand pairings. b: The two alignments
then exchange all SSE pairings to the
right of the crossover point. In this
example, the new alignments contain
exactly one copy of each SSE, so the
alignments do not need to be repaired.

TABLE III. Speed of Alignments by KENOBI on Several Different Computer Architectures†

System Processor type
Number of
processors

CPU time (sec)

1BOO and 2ADMA
without constraints

2HHBA and 2HHBB
without constraints

2HHBA and 2HHBB
with constraints

SGI Indigo 2 R8000, 75 MHz 1 407 122 73
SGI O2 R5000, 200 MHz 1 239 76 38
SGI Power Onyx R10000, 194 MHz 1 222 55 26
SGI/CRAY Origin 2000 R10000, 195 MHz 1 175 52 25
AMD (LINUX operating

system)
AMD K6-2, 400 MHz 1 178 47 21

†To test KENOBI’s speed, we aligned a pair of DNA methyltransferases, 1BOO and 2ADMA, and a pair of globins, 1/2HHBA and 2HHBB, on
several different computer systems. The times reported are the average CPU times needed to generate four correct alignments. The same random
number generator seeds were used on all systems. The DNA methyltransferase alignments were made without sequential constraints; the globin
alignments were made both with and without sequential constraints.
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