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Abstract 

In protein threading, one is given a protein sequence, together with a database of protein 

core structures that may contain the natural structure of the sequence. The object of 

protein threading is to identify correctly the structure(s) corresponding to the sequence. 

Since the core structures are already associated with specific biological functions, 

threading has the potential to provide biologists with useful insights about the function of 

a newly discovered protein sequence. Statistical tests for threading results based on the 

theory of extreme values suggest several combinatorial problems. For example, what is 

the number of ways m L  of choosing a sequence  from the set 

, subject to the difference constraints { , where 

′ = > =xt i i i# { } 0
n n{ }Xi i=1

}xi i
n>+ =1 0{ , ,..., }1 2 t L X Xi i i= − X 0 0= , 

, and {  is an arbitrary sequence of integers? The quantity m  has many 

attractive combinatorial interpretations and reduces in special continuous limits to a 

probabilistic formula discovered by de Finetti. Just as many important probabilities can 

be derived from de Finetti’s formula, many interesting combinatorial quantities can be 

derived from . Empirical results presented here show that the combinatorial approach 

to threading statistics appears promising, but that structural periodicities in proteins and 

energetically unimportant structure elements probably introduce statistical correlations 

that must be better understood.  

X tn+ = +1 1 }xi i
n
=0 ′

′m

Keywords: Protein Threading, Extreme Value Statistics, Poisson Clumping Heuristic, 

Probabilities related to Uniform Distributions 
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1 Introduction 

In recent years, laboratory automation has led to an explosive acquisition of 

biological information like DNA sequences [10], protein sequences [8, 9], and protein 

structures [1, 2, 19]. As the corresponding databases have grown, sifting them for 

biological relationships has become increasingly central to cell biology, biochemistry, 

and molecular biology, and ultimately to therapeutic drug design. Because the search for 

relationship is akin to looking for needles in a haystack, or more formally, finding 

unusual events among many alternatives, extreme value statistics are now an implicit [15, 

20, 21] but essential tool of the bench biologist [4, 5]. 

Let  be a sequence of random variables, and let Y Y  represent the 

corresponding order statistics, i.e., the same values {  but in increasing order. The 

theory of extreme values seeks as its grail the limiting distribution of Y  and the 

other order statistics as m .  

{ }Yi i
m
=1 Ym1 2

* * ...≤ ≤ ≤

m
* =

1

*

Y

}Yi i
m
=1

i m imax
≤ ≤

→ ∞

Extreme value theory has essentially two forms, classical and modern. The prototype 

for a classical result states that if  are independent and identically distributed, after 

a linear scaling , only three non-degenerate limiting distributions for Y  

can occur as  [17]. If 

{ }Yi i
m
=1

)ξm m m ms Y c= −−1( *

m→∞

m
*

ξm  does not degenerate to a constant, the limiting 

distribution of ξm  (if it exists) is one of only three types of extreme value distribution 
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where α > 0

(

 is arbitrary. The values of , , and  are restricted to ( , 

, and , respectively. The right-hand tail of the 

ξ ( )1 ξ ( )2 ξ ( )3 , ]−∞ 0

( , )0 ∞ , )−∞ ∞ Y  distribution determines 

which of the three extreme value distributions pertains.  

Even if the members of  are correlated, their maximum Y  often approaches an 

extreme value distribution anyway. Empirical fits to the scaling parameters  and c  

can then yield appropriate thresholds for statistical significance. In this way, the classical 

theory provides practical statistical methods for many important database searches [6].  

{ }Yi i
m
=1 m

*

sm m

On the other hand, the modern theory emphasizes the rich combinatoric structure of 

extreme values [3]. An extreme value [  is a rare exceedance [  among  

trials . If {  are independent and identically distributed, the number 

]*Y ym ≥ ]Y yi ≥ m

{ }Yi i
m
=1 }Yi i

m
=1 N  of 

exceedances is approximately Poisson distributed, where the Poisson parameter λ  equals 

the expected number of exceedances  (consider  Bernoulli trials, each with 

a vanishing probability of success P Y

mP Y y( 1 ≥

y( )≥

) m

m1
1= −λ , as m→∞ ). The events [  and ]y*

mY <

[ ]N = 0

[ m i−

 are identical, so . Likewise, the 

events 

P Y P Ym (* −
1

λ

,...,y Ym

y e( ) )< = ≈

*
i

P N( = 0

]y

m[= − y)]≥exp

,* *YmY y − +< ≥ ≥1  and [ ]N i=  are identical, since the i  largest 

Y ’s exceed  if and only if i  of the y Y ’s exceed . Thus, 

 (an approximation that can appear 

somewhat mysterious when the Poisson context is not emphasized [17]). 

y

P Ym i y Y( ,* * y Ym,..− − y i* ≥1 P i)+ = λN i e( ) −= ≈ λ
m i.,< ≥ / !

Modern theory can often put bounds on the error in a Poisson approximation, even 

when the members of {  are correlated [7]. Although correlations reduce the effective }Yi i
m
=1
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number of independent trials, the corresponding Poisson parameter sometimes can be 

interpreted directly as λ = ≥m P Y yeff ( 1 )  (an effective number of independent trials m  

times the probability of an exceedance , where m  is called “the extremal 

index” [25]).  

eff

P Y y( 1 ≥ ) eff

′

′ ′m

′

m

meff

This paper pursues the extreme value statistics for the biological problem of protein 

threading [23, 24, 27]. Section 2 gives a simplified description of protein threading, its 

biological significance, the problem of finding appropriate statistical thresholds, and the 

combinatorial quantity m  associated with the corresponding extreme value statistics. 

Section 3 defines a combinatorial quantity m  related to m , derives a simple formula for 

, and then reinterprets m  in several different ways. Section 3 also shows how ′m  

relates in the continuous limit to an interesting probabilistic formula due to de Finetti 

[14]. Section 4 then elaborates on the formula for m  until it derives , the 

combinatorial quantity associated with the extreme value statistics of protein threading. 

Although the derivation of  is mostly a combinatorial etude, it shows implicitly how 

several important probabilities can be derived from de Finetti’s formula. The Results 

section then determines  empirically and compares it to  for several different 

protein sequences and core structures. Finally, the Discussion summarizes the main 

results and examines the prospects for furthering a combinatorial approach to threading 

statistics. 

m

m
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2 Protein Threading 

Figure 1 near here 

In protein threading, one is given a protein sequence, together with a database of 

protein core structures that may contain the sequence’s natural structure [27]. The object 

of protein threading is to identify correctly the structure(s) corresponding to the sequence 

[11, 28, 29]. Since the core structures are already associated with specific biological 

functions, threading has the potential to provide biologists with useful insights about the 

function of a newly discovered protein sequence.  

To develop the intuition underlying a mathematical statement of protein threading 

(see Figure 1), think of the protein sequence as a sequence of differently colored 

spherical beads (different amino acids). The beads all have the same radius. (Amino acids 

have different sizes but in the present context, this is irrelevant.) A flexible string (the 

protein backbone) goes through the center of each bead. Two knots, one just before the 

first bead and a second just after the last bead, keep the beads on the string in constant 

contact.  

Next, think of a protein core as a set of tubes that are twisted around each other and 

then fixed rigidly together in space. (The individual tubes correspond to structure 

elements like alpha helices and beta sheets that are tightly packed together in a protein 

core.) The tubes’ inner diameters are constant and equal the bead diameter, but their 

lengths vary and are integer multiples of it. The tubes are numbered sequentially, and one 

end of each tube is labeled “in”; the other, “out”.  
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The second knot, the one at the end of the string of beads, is then grasped and used to 

draw the beads through all the tubes sequentially, in the correct order. Once the beads 

have been threaded through all the tubes, the knots at both ends are elaborated and 

enlarged, to prevent them from entering the tubes again. Loops of string, along with the 

beads overlying them, now hang out from between successive tubes. We impose length 

restrictions on each loop (corresponding to the loop lengths found in actual proteins), and 

we insist that each bead be either entirely in a loop or entirely in a tube. Otherwise, the 

loop lengths may be adjusted by pulling on the loops as we please to produce different 

threading configurations. (The Discussion tinkers somewhat with these restrictions, but 

they provide a useful preliminary framework for threading statistics.)  

Finally, threading forces the beads within the adjacent tightly packed tubes into 

proximity. For each pair of beads, their position within the tubes and their color 

determine a pairwise energy of interaction (the attraction or repulsion of the 

corresponding amino acids [13]). In this model, any bead outside the tubes is irrelevant, 

and the energy calculations ignore it. The sum of the pairwise interaction energies gives 

the total energy of each threading configuration. Given a particular string of colored 

beads (a protein sequence) and set of rigidly fixed tubes (a protein core), the total energy 

can be minimized over all threading configurations. If this minimum energy is 

statistically significant as an extreme value, and thus unlikely by chance alone, the 

protein sequence probably corresponds to the core structure in nature [12].  

In mathematical terms, let  represent a given sequence of  bead colors. 

The 

A A At1 2, ,...,

Ai ( ,i

t

i th color in the sequence is  ,..., )t= 1 2 , where A C a b ci ∈ = { , , , }... , the set of 
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all possible colors. Consider a set of  rigidly fixed tubes and a particular threading 

configuration through it, and let 

n

X 1 2 tn1
∈{ ,..., }

1 ( ,n1 1 2

,  be the sequence number of the first bead 

just inside the “in” end of the n th tube ,..., )n= . The color of the bead in position 

 counted from the “in” end of tube  is therefore , and each threading 

configuration corresponds to a set of  sequence numbers .  

i1 n1

n

AX in1 1 1+ −

{ }Xi i
n
=1

C C R×

2

}Xi i
n
=1

X n} 1 En i n i,1 1 2

, ,...i

AX in
,

1 1

n

i

l

n

n

n

n n

)= ==
===
∑∑∑1

2
111 2

2

21

(

i

ln

=
∑

1 1

1

)= 1 2

1
2

X

}i i
n
=1

Xi0 x X< − +(

xi +1 ′xi ( = 0

Let the function En i n i1 1 2 2, :

2

 give the interaction energy between position i  in 

tube  and position i  in tube n . For beads of color  and b , e.g., let the interaction 

energy be −

1

n1 a

E a b, )n i n i1 1 2 2, ( , where we have introduced a minus so that the extreme values 

are maxima as in the Introduction, and not minima. The (minus) total interaction energy 

of the threading configuration {  is the sum over all the pairwise energies:  

 E E Ai i X in
( ) ({ ( )X 12 2 2

, (2) + − + −1

where  denotes the length of tube i  li , , and “self-energy” terms like 

11 1 1 1 1 1
An i X i X in n, ( ,+ − + −1)

i

1 1
E An i  represent, e.g., interactions with the surrounding solvent.  

Eq (2) elides the spatial nature of the energies, but otherwise it has the same content 

as the prior intuitive verbiage about beads and tubes.  

Constraints on the loop lengths limit the numbers {  in Eq (2). These constraints 

could include the number of beads before the first tube or after the last tube, so let 

, , and . The constraint 

X

i i0 0= X tn+ = +1 1 l0 = l xi ≤ ′)+1  permits the i th 

loop to have any length between  and  inclusive , ,...,i )1 . For a bead n
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sequence of length , these constraints permit some number 

 of distinct threading configurations. 

t

xi
n≤ ′}

max
X

m x X X lt i i i i i= < − ++# { ( )1

0 =

E0 E0

P E{max ( )X X <

( )X

X

=0

Let the extreme value statistic corresponding to a particular bead sequence and set of 

rigidly fixed tubes be E , where the maximum is taken over all threading 

configurations, subject to the loop constraints. To determine the statistical significance of 

E( )X

, we need to compare  to extreme value statistics from “random” bead sequences, 

which we generate as follows [12].  

The given bead sequence has t  permutations, all of which match the original 

sequence for length and color composition. Pick a random sequence uniformly from the 

permutations, and calculate its extreme value statistic ma . Assume that for the 

random sequence, the energies 

!

x ( )X XE

E(X

E }

)

≈ −
0

 from different threading configurations are 

independent and identically distributed (which they clearly are not). Then according to 

the Introduction, , where e λ λ = ≥mP E E{ ( )X

!

}0 . In both of these 

probabilities, the bead sequence is chosen uniformly from the t  permutations. In the 

first, however, E  is maximized over the  constrained threading configurations, 

whereas in the second,  is chosen uniformly from among them.  

m

If the database of protein cores contains N  independent structures (10 102 3≤ ≤N  at 

present), a p-value correction is necessary for testing a protein sequence against so many 

cores. Because of the multiple testing, if an overall statistical significance of p  is desired, 
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the p-value against each individual protein core must be . Thus, 

, because  (and therefore 

pN −1

pN P E E e− = ≥ ≈ −1
0 1{max ( ) }X X λ λ− ≈ pN −1 λ ) is small. 

E }≥ 0( )X

E }≥

m P E E P Eeff = ≥{max ( ) } / { ( )X X 0

meff m

P E E{max ( ) }X X ≥ 0 m meff

P E E{ ( ) }X ≥ 0

P E E m P E Eeff{max ( ) } { ( ) }X X ≥ = ≥0

m x X X l xt i i i i i i
n= < − + ≤ ′+# { ( ) }1

m ′

′

′

With modern computing, Monte Carlo estimation of  is time-

consuming but feasible [12]. The Monte Carlo estimation of 

P E{max
X

P E{ ( )X 0 , which omits 

the maximization, is much faster [30]. If the actual number m  of threading configurations 

were known, it could be compared to the effective number 

 of E }X ≥ 0 independent threading configurations. 

Regularities between  and  could then speed the computation of the statistical 

significance  as follows. If  were to determine , the rapid 

computation of  would then yield the statistical significance 

. Thus, we are motivated to calculate 

 and to compare it to m . 

X

=

0

0 eff

Section 3 following gives an explicit formula for a simple combinatorial quantity ′m  

related to , reinterprets m  in several different ways, and then in the continuous limit 

derives from m  a probabilistic formula due to de Finetti. Section 4 elaborates on the 

formula for m  and determines m  in terms of ′m .  
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3 The Basic Formula and Its Interpretations 

Consider an arbitrary sequence {  of  integers (in no particular order, with 

repetitions permitted), with the sentinels 

Xi i
n} =1

X 0

n

0=  and X tn+ = +1 1

Xi i
n} =1

 before and after, with  

an arbitrary integer. Let {  be the sequence of differences, some of 

which may be negative. Given a second arbitrary sequence of integers { , let 

 be the number of distinct sequences {  satisfying the constraints 

 (cf. [18, p. 3]). Then 

t

L Xi i+ Xi
n= −1 } =i 0

}xi i
n
=0

′ = > =m L xt i i i
n# { } 0

L x ii i> = ( , ,...,0 1 n)

 ′ = > =
− − − −F
HG

I
KJ =

− − − −
=

+m L x
t x x x

n
t x x x

nt i i i
n n n

n

# { }
... ( ... )

!

( )

0
0 1 0 1 , (3) 

where  for x x x x nn
+ = − − +( ) ( )...( )1 1 x ≥ 0 , and 0 otherwise. This basic formula is 

somewhat surprising: it is detailed, simple, and general, all at once. 

Before proving Eq (3), let us survey some special cases. The first (and thoroughly 

elementary) case is x x xn0 1 0= = = =...

, ,..., }1 2 t

n

, corresponding to choosing n  distinct elements 

of the set {  in ascending order.  Because each choice corresponds to a subset of 

 elements from , Eq (3) is correct.  The second case is  and 

, choosing  elements of the set {  in ascending order, but with 

repetitions permitted. The second case is a combinatorial proto-chestnut due to Euler, 

who showed that the choice can be made in  ways [26].  

, ,..., }1 2 t

{

n 1 1= −−

n x xn0 0= =

x x1 = =... , ,..., }1 2 t

) / !( ) nn
+1(t n+ −
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Proof of Eq : Consider the 1-1 correspondence between X = ( , ,..., )X X Xn1 2  and 

′ = − − − − − − − −X ( , ,..., ... )X x X x x X x x xn1 0 2 0 1 0 1 1

L x i ni i> = ( , ,..., )0 1

0 1 2 0 1< ′ < ′ < < ′ ≤ − −

n . Every integer -tuple  satisfying 

 corresponds to an integer n -tuple  satisfying 

n X

′X

− −X X X t x x xn n... ...

( ... ) / !( )t x x x nn
n− − − − +0 1

. Since the latter set has cardinality 

, this establishes Eq (3).  

(3)

Other proofs of Eq (3) are possible. For example, the 1-1 correspondence between 

 and X = ( , ,...,X X Xn1 2 ) ′ = − − −− +X ( , ,..., , , ,..., )X X X X X Xj j j n1 2 1 11 1 1

}i ij i
nx − =0δ

 shows that 

, where # { } # {t i i i
nL x> == −0 1t iL > δ ij  is Kronecker’s delta (δ ij = 1 if i j=

xn 0

, and 

0 otherwise). This relation gives  after repeated 

application. Eq (3), however, has already been established when 

# { } # { }...t i i i
n

t x x x i i
nL x L

n
> = >= − − − − =0 00 1

0

x x0 1= = =... = . 

Similarly, conditioning on  gives Xn

 , (4) # { } # { }
...

t i i i
n

X i i i
n

X x x x n

t x

L x L x
n

n n

n

> = >= −
−

= + + + +

−

−

∑0 1
1

0 1 1

=0

+ =1 0

+

whereas conditioning on  gives X1

 . (5) # { } # { }
...

t i i i
n

t X i i i
n

X x

t x x n

L x L x
n

> = >= −
−

= +

− − − − +

∑0
1

1

1

1

1 0

1

Both recursions lead to an inductive proof of Eq (3), because the formula 

 for # { } ( ) / !( )
t i i iL x t x x> = − −=0

1
0 1

1 1 n = 1 is easy to establish.  
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Eq (3) can be reinterpreted in many interesting ways. Choose a sequence of  distinct 

elements  (in no particular order) from the set { , and let 

n

< <{ }Yi i
n
=1 , ,..., }1 2 t X X Xn1 2 <...  

be the corresponding order statistics. Add to them the sentinels X 0 0=  and Xn+ t= +1 1, 

and define the difference sequence  as before. Given an arbitrary 

sequence of integers { , the number of sequences {  whose order statistics 

satisfy the constraints 

{L Xi i= −+1

n

Xi i
n

0} =

Y}xi i
n≥ =0 0

L xi i>

}i i
n
=1

i = ( , ,0 1 ..., ) ! #  

}Yi i
n
=1 X

 is . 

(The -1 correspondence between {  and {  requires distinct , so the 

restriction {  really is necessary.) 

n Lt i i
n{⋅ >

}i i
n
=1

x i (= t x xn
n. )( )− − − −= +0 0

{ }Yi i

x ..1

n
=1

}

n!

}i
n
=0 0xi ≥

A circular lattice of length t +1 yields another interpretation. Consider  equally 

spaced points around a circle, and label them 0  in counterclockwise order. Starting 

with 

t +1

1, ,..., t

X 0 0=  and ending with Xn+ =1 0 , let the sequence {  progress in “increasing 

order” (e.g., counterclockwise) around the circular lattice, with repetitions permitted. Let 

 as usual, but define 

Xi i
n} =0

1+

{ Xi i
n−

1
1} =L Xi i= −+ 0 L t Xn n= + −1 (not L X Xn n n= −+1

xi ≥ −

), so that that 

the differences are all nonnegative. Given any sequence of integers {  except 

the sequence 

}n
=1 0i

x x xn0 1= = =...

L x ii i> = ( ,0 1

1= −

n..., )

, the number of distinct sequences {  satisfying 

the constraints  is  from Eq (3). This can be proved by 

a standard 1-1 correspondence: break the circular lattice open at , and place 

 at 

X }

X n0 =

i i
n
=1

X 1+

, # {t i }i i
nL x> =0

X 1= Xn0 + both ends of the resulting linear lattice. For any sequence {  except 

 (hence the exclusion of 

Xi i
n} =1

{X }i i
n= =0 1 x x xn0 1 1= = = = −... ), the circular order and 

placement corresponds uniquely to a linear placement of { . Moreover, if Xi i
n} =1
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{ }xi i
n≥ =0 0

{ }Yi i
n
=1

  

, by analogy with the previous paragraph, the number of circular sequences 

 whose “order statistics” {  satisfy the constraints  is 

again  (circular “order statistics” being taken 

counterclockwise on the circular lattice, starting from 0). Circular symmetry adds another 

factor to give (  if an element Y

Xi i
n} =1

x x .− −=

) (( )x tn
n
+

L x i ni i> = ( , ,..., )0 1

X0

n L x t xt i i i
n

n
n! # { } ( .. )( )⋅ > = − −0 0 1

... )t x x− − − − +0 1 1

+

0 =  is prefixed to the 

sequence, placed arbitrarily on the circular lattice, and taken as 0 for ordering the circular 

order statistics. 

n,...,

(i

)

, ,..., )nX x
j

i
0 0

1

=

− i X X n ii i n 1 1+ ≤ ≤ − −+∑ ∑+ b gxij i

n
−

=
= 1 2

′ ≤ ≤a ′ =X b i n ( , ,..., )1 2
=

−∑i n j

in
., 0

1

,..., }′ ′ + ′a a b1

X si i

i ′ =
mi

,..1 i ′ = − + −= =∑ x ni n jj i

nmin
,...,1

= Ξ x si i= ξ t s= τ

s→∞

Like many other combinatorial results, Eq  can be paraphrased probabilistically. 

The constraints L x ii i> = ( ,0 1

+

 imply 

 , yielding 

, where a x  and b t . 

The set { ,  therefore provides a universe for probabilists (i.e., their 

denominator). The “continuum limit” 

= +je j ie j

, L si i= Λ , , and  with 

 puts the resulting probabilities into a continuous setting. The continuum limit and 

Eq (3) generalize a beautiful result [14] that de Finetti originally proved by geometric 

considerations (a combinatorial proof may be more appealing to those who mistrust their 

geometric intuition). De Finetti’s result deserves to be better known, even beyond its 

appearance in Feller [16, p. 42], because it provides a unified derivation of many 

important probabilities.  

(3)
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Consider an arbitrary real number τ  together with an arbitrary sequence of real 

numbers { , and let  and . Consider a 

sequence  of n  independent random variables chosen uniformly from [

}ξ i i
n
=0

{ }Ξi i
n
=1

α α ξ≤ ′ = = ∑min
,...,i n j1 0=

−

j

i 1
τ ξ β− = ′ ≤= =∑min

,...,i n jj i

n

1 β

, ]α β , and 

add to it the sentinels Ξ  and 0 0= Ξn+ =1 τ . Define the difference sequence 

, and let  be the probability that the sequence {  

satisfies the constraints 

{Λ Ξi i i= Ξi
n

+1 - } =0 P i i
n

τ ξ{Λ >

Λ i i i>

i} =0 }i i
n
=1Ξ

n=ξ  ( , ,0 1 ..., ) . Note that Ξi ∈[ ,′ ′ ⊆] [ , ]α β α β  

(i ). With the obvious correspondence, the continuum limit of Eq (3) gives  n.,= 1 2, ,..

 n P t x x x
si i i

n

s

n
n

n
n

n

n! { } lim ( ... )
[ ( )]

( ...
( )

( )

⋅ > =
− − − −

−
=

− − − −
−= →∞

+ +
τ ξ

β α
τ ξ ξ ξ

β α
Λ 0

0 1 0 1 )

n

, (6) 

where  for ξ ξ+ =
n ξ ≥ 0 , and 0 otherwise. 

Eq (6) generalizes de Finetti’s result, which he subjected to the restriction { . 

Like Eq (3), the common value in Eq (6) can be reinterpreted in many attractive ways 

under de Finetti’s tight restriction { . In de Finetti’s interpretation for 

}ξ i i
n≥ =0 0

}ξ i i
n≥ =0 0

[ , ] [ , ]α β τ= 0

{

 and { , it is the probability that the order statistics {  for a 

sequence  chosen uniformly from [

}ξ i i
n≥ =0 0

1

}Ξi i
n
=1

}Η i i
n
= , ]0 τ  satisfy the constraints 

Λ i i i> = nξ  ( ,0 1,.

Ξ

.., )

}i i
n
=1

. With the same restrictions, it is the probability that the circular 

order statistics {  for a sequence {  chosen uniformly from a circle of length }Η i i
n
=1 τ  

satisfy the constraints Λ >i i i n=ξ  ( , ,..., )0 1  (where Η Ξ0 0 0= = , and “circular order 

statistics” progress counterclockwise on the circle starting from 0). Even if Ξ0  is 

permitted to vary around the circle, this probability remains the same because of circular 
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symmetry. In all of these cases, {  and the corresponding order statistics  are 

in n -1 correspondence, providing the n  factor in Eq (6). 

}Η i i
n
=1 { }Ξi i

n
=1

! !

The next section shows implicitly how several continuous probabilities can be 

derived methodically from de Finetti’s Eq . This is accomplished by deriving the 

corresponding combinatorial results from Eq (3), the combinatorial analog of de Finetti’s 

Eq (6). The next section also derives some combinatorial results related to threading 

statistics. 

(6)
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4 Consequences of the Basic Formula 

Eq (3) yields combinatorial analogs of several important probabilities. Many of these 

analogs require the generalized inclusion-exclusion formula [18], given here for future 

reference. Let {  be a sequence of subsets of some set }Ai i
n
=1 Ω , and let  denote 

the number of elements in ∩ . The number of elements belonging to exactly 

#{ ,..., }i ik1

Aij

k

j=1
k  of 

the sets {  is }Ai i
n
=1

 #[ ] ( ) #{ ,..., }
...( )

k
j
k

i ij k
j

i ij k j

= −
F
HG
I
KJ

−

< <≥
∑∑ 1 1

1

. (7) 

If j = 0  (no restricting condition), #  is defined to be the number of elements of { } Ω .  

Choose  distinct elements {  from the set { , and let n }Yi i
n
=1 , ,..., }1 2 t X X Xn1 2< < <...

=1

 

be the corresponding order statistics. The number of sequences {  such that every 

difference between the consecutive order statistics exceeds 

}Yi i
n

x ≥ 0  is 

 , (8) n L L x L x L t n xt n n
n! # { , ,..., , } [ ( ) ]( )  ⋅ > > > > = − −− +0 1 10 0 1

because Eq (3) with  and x xn0 0= = x xn1 1 x= = =−...  counts the required number of 

ascending n -tuples satisfying the constraint. In the continuum limit (with x s= ξ ), Eq (8) 

yields the probability that when  points are chosen uniformly on a line segment of 

length 

n

τ , no two are closer than ξ  [22, p. 132].  

The recursion Eq (4) applied repeatedly to itself gives 
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 . (9) # { } ...
......

t i i i
n

X x

X x

X x x x n

X x

X x x x n

t x

L x
n n

n n

n n

n

> ==
= +

− −

= + + + + −

− −

= + + + +

−

∑∑∑
− −

−

−

0
1

1

1

1

1
1 0

2 1

1 0 1 2

1

0 1 1    

This repeated summation, when carried through explicitly, gives another proof of Eq (3). 

In the continuum limit, a similar but simpler repeated integral proves the continuous 

analog of Eq (8) directly [22, p. 132]. Similar comments apply to the recursion Eq (5), 

which when applied repeatedly to itself gives 

 . (10) # { } ...
.........

t i i i
n

X x

t X X x

X x

t X x x n

X x

t x x n

L x
n n

n nnn

> ==
= +

− − − −

=

− − − − +

=

− − − − +

−

−

∑∑∑0
1

21

1
1

1 1

2 1

1 2

1 0

1

+1+1   

   

Now choose n  distinct points {  from +1 }Yi i
n
=0 t +1 points on a circular lattice, and 

after starting at Y , progressing counterclockwise, and ending at , specify 0 Y0 j  of the 

distances between consecutive circular order statistics of . The number of distinct 

choices making those 

{ }Yi i
n
=0

j  distances greater than x ≥ 0  is 

 . (11) 

(11)

n L x i i i i L t t jx tt i j i
n! # { ( ,..., ); } ( )( )     otherwise   ( + ) ( + )⋅ > = = > ⋅ = − +1 0 1 1

x

In the continuum limit above, Eq (11) yields a related probability [22, p. 132].  

In the context of Eq  and the generalized inclusion-exclusion formula of Eq (7), 

let  and . Above, the number of distinct choices making Ω = > ={ }Li i
n0 0 A Li i= ∩ >Ω { }

exactly k  of the consecutive distances greater than x ≥ 0  is 

 #[ ] ( ) ( )( )k
j
k

n
j

t jx tj k n

j k

n

= −
F
HG
I
KJ

+F
HG
I
KJ −−

+
=

+

∑ 1
1

1
1

( + ) . (12) 
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The specialization k = 0 gives the number of distinct choices making all the consecutive 

distances less than or equal to x . Eq (12) and the specialization k = 0 both yield standard 

probability results in the continuum limit [16, p. 28, 22, p. 132].  

Results on the line resemble those on the circle. We now confine the discourse to 

choosing  distinct elements {  from { , as in protein threading. Let 

 be the corresponding order statistics, with sentinels  and 

, and difference sequence { , as usual. From the inclusion-

exclusion formula and Eq (3), the number of sequences {  satisfying the constraints 

 is 

n

...

t 1

{ }i i
n

}Yi i
n
=1 , ,..., }1 2 t

}Xi i i
n= −+1

X X Xn1 2< < <

Xn+ = +1

0 0< ≤ =L x i

X 0 0=

L X i=0

}Yi i
n
=1

 n L x t x xt i i i
n j

i i
n

i i nj

n

j

j

! # { } #[ ] ( ) ( ... )( )

( ... )

  ⋅ < ≤ = = − − − −= +
≤ < < ≤=

+

∑∑0 0 10
00

1

1

1

. (13) 

Since we have confined the discourse to distinct elements  from , our 

notation will now omit vacuous constraints like 0

{ }Yi i
n
=1 { , ,..., }1 2 t

< ≤Li t . If x xn 1 x1 = = =−...  with 

 in Eq (13), i.e., x xn0 = = t

n n L x
n

j
t jxt i i

n j

j

n

! # { } #[ ] ( ) ( )( )  ⋅ < ≤ = = −
−F
HG
I
KJ −=

−
+

=

−

∑0 0 1
1

1
1

0

1

. (14) 

The corresponding continuum probability is a standard result [16, p. 28].  

As in Eqs  and , recursions determine the common value in Eq (13): (4) (5)
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 . (15) 

# { } # { }

...

t i i i
n

X i i i
n

X t x

t

X X x

X

X X x

X

X t x

t

L x L x
n

n n

n n n

n

n n

0 0

1

0 1
1

1

11

1 1 2 1

2

1 1

< ≤ = < ≤

=

= −
−

= + −

= −

−

= −

−

= + −

∑

∑∑∑
− −

                           
   

0=

0=

=0

and 

 . (16) 
# { } # { }

...

t i i i
n

t X i i i
n

X

x

X X

X x

X X

X x

X

x

L x L x

n n

n n

0 0

1

0 1
1

1

111

1

1

0

1

1 1

2 1

1 1

1

0

< ≤ = < ≤

=

= − +
−

=

= +

+

= +

+

=

∑

∑∑∑
−

− −

                           
  

We can now calculate the number of constrained threading configurations 

. The 1-1 correspondence 

between  and 

m x X X l x x l L x lt i i i i i i
n

t i i i i i i
n= < − + ≤ ′ = + < ≤ ′ ++ =# { ( ) } # { }1 0

X = ( , ,..., )X X Xn1 2 ′ = − − − − − − − −,..., ... )x X x x xn n1 0 1 1X  

(where 

( ,X x X x1 0 2 0

′ = ′ − ′+L X Xi i i1 = 0 1, ,...,; i n ) shows 

 # { } # { }...t i i i i
n

t x x x i i i i
nx L x L x x

n
< ≤ ′ = < ′ ≤ ′ −= − − − −0 0 1

0 =0 , (17) 

 Thus, Eqs (13), (15), and (16) provide practical formulas for computing m  rapidly.  
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5 Results 

Figure 2 near here 

Figure 2 shows a log-log plot for the loop-constrained threading of several different 

protein sequences and core structures. The effective number of threading configurations 

 as estimated by Monte Carlo simulation (Y-

axis) is plotted against actual number of threading configurations 

 as calculated by Eqs -(17) (X-axis). There are 

some outliers, but the empirical relationship m  is surprisingly consistent.  

m P E E P E Eeff = >{max ( ) } / { ( ) }X X X0

m x X X l xs i i i i i i
n= < − + ≤ ′+ =# { ( ) }1

eff ≈
−10 2 5.

> 0

0

m

m

(13)

For a particular random sequence and rigid core structure, if all the threading 

configurations were independent, the empirical relationship would be m . The 

empirical discrepancy indicates that the energies of different threading configurations are 

correlated, 

eff =

even for random sequences. First, correlations can be caused by periodicities 

in protein core structures. Periodic interactions abound in nature (e.g., pairs of alpha 

helices and beta strands, either parallel or anti-parallel). Consider an extreme case (period 

1), where two long “rigid tubes” (e.g., beta strands) are fixed parallel and side-to-side 

along their length. Pulling the beads through them in parallel may generate new threading 

configurations, but it changes the bead interactions very little. Second, correlations can be 

caused by structure elements that do not interact strongly with other parts of the protein 

core.  The corresponding rigid tubes can be placed arbitrarily without much influence on 
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the total interaction energy. These two effects conspire to introduce correlations between 

threading configurations, so they lower m  relative to .   eff m
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6 Discussion 

The extreme value statistics of protein threading suggest a combinatorial problem, 

calculating the number of ways  of choosing a sequence {  from 

the set , subject to the difference constraints { , where 

 and , and  is an arbitrary sequence of integers. The quantity 

 has many attractive combinatorial interpretations and is closely related to a 

probabilistic formula discovered by de Finetti. Just as many important probabilities can 

be derived from de Finetti’s formula, many interesting combinatorial quantities can be 

derived from m .  

′ = > =m L xt i i i
n# { } 0

}xi i
n
=0

}Xi i
n
=1

}xi i
n>+ =1 0{ , ,..., }1 2 t

Xn+1

′

L X Xi i i= −

X 0 0=

′m

t= +1 {

In particular, m  is involved in many combinatorial problems related to protein-

threading statistics. These statistics involve constraints {  on 

the loop lengths, and Section 4 calculates the corresponding combinatorial quantity 

 in terms of 

′

− (

( ) }x X X l xi i i i i i
n< − + ≤ ′+ =1 0

m x X X l xt i i i i i i
n= < + ≤ ′+# { ) }1 =0 ′m .  

These loop constraints are somewhat arbitrary. To increase statistical power, e.g., one 

might try constraining only the internal loop lengths, along with their sum. This yields the 

following combinatorial problem: what is the number of ways of choosing a strictly 

increasing sequence {  from , subject to the restrictions  and 

 ( ? The answer is 

}Xi i
n
=1

, )n −1

{ , ,..., }1 2 t X Xn − =1 s

1 1 0

x L xi i< ≤ ′i ,...i = 1

 , (18) # { , ( ,..., )} ( ) # { }t n i i i s i i i i
nX X s x L x i n t s x L x− = < ≤ ′ = − = − ⋅ < ≤ ′− + + =
−

1 1
21 1
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where the right side can be found in Section 4. The proof follows:  can be chosen in 

 ways (which then fixes ). The sentinels  and  that bracket  are  

apart, and since the sequence {  satisfies the difference constraints on 

the right above, this proves Eq (18). Obviously, many other combinatorial problems in 

protein threading can be solved systematically within the framework of this paper. 

X1

t s− Xn X1

i=1 0
2

Xn { }Xi i
n
=
−
2
1 s

}L X Xi i i
n= −+ +
−

2

The extreme value statistics of protein threading would have been completely solved 

if the empirical relationship in Figure 2 were meff m=  instead of . Although 

the relationship m  might be consistent enough for some purposes, the factor 

 displays a confounding effect from energetic correlations between different 

threading configurations. These correlations probably reflect natural periodicities found 

in protein structures and are currently under investigation. 

meff ≈
−10 2 5. m

meff ≈
−10 2 5.

10 2 5− .
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Captions for the Figures 

 

Figure 1: A Schematic Representation of Protein Threading. 

Figure 1 displays a protein sequence as a string of colored beads, here in the two colors, 

black and white. It also displays a protein core structure as 4 horizontal “tubes”, the 

rectangles in heavy outline. The beads have been threaded through the tubes. Threading 

has forced the beads within the adjacent tightly packed tubes into proximity. The 

resulting energy interactions between pairs of beads are indicated by the vertical 

rectangles. If the two beads have the same color, the corresponding rectangle is black, 

indicating one particular strength of interaction; if they have different colors, it is white, 

indicating another. The arrows indicate the possibility of pulling the beads through the 

tubes. Note, e.g., if one pulls the middle loop on the left and advances the beads in both 

middle tubes leftward one position, this changes only two interactions in the middle 

tubes: the one on the left disappears, and a new one appears on the right. Thus, the bead 

interactions in different threading configurations may be highly correlated. 
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Figure 2: A Plot of  against mmeff =#{ }effective =#{combinatorial} (Unavailable 

electronically). 

Figure 2 plots the effective number of threading configurations 

 as estimated by Monte Carlo simulation (Y-

axis) against actual number of threading configurations 

 as calculated by Eqs (13)-(17) (X-axis). There are 

some outliers, but the empirical relationship m  is surprisingly consistent.  

m P E E P E Eeff = >{max ( ) } / { ( ) }X X X0

m x X X l xs i i i i i i
n= < − + ≤ ′+ =# { ( ) }1

> 0

0

meff ≈
−10 2 5.
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