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Summary. The solutions of autonomous dynamical systems with periodic coef-
ficients mainly depend on the Floquet-Liapunov exponents of a Hill’s associated
equation. These exponents are computed without integration by a very fast algo-
rithm which exponentially converges.

So, some important features of the solutions behaviour, such as the location of
the temporal mean in the phase plane, funnelling phenomenon, period doubling,
parametric resonances, can be specified. In this paper, the implementation of the
method is shown on a parametric Van der Pol equation.
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1 Some previous results

Consider the Van der Pol equation:




εdx(t)
dt = −x3

3 + x + y

dy(t)
dt = −x

(1)

where ε = 0.05. In previous works, we established that the location of
the points where the curvature of the trajectory in the phase plane vanishes
provides the following equation of a slow manifold [1]:

φ = y − x5 − 4x3 + 3x (1− ε)
3 (x2 − 1)

= 0 (2)

Moreover, the attractive part of this manifold, given by V.∇φ > 0, is an
invariant manifold.
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2 Interpretation

Let ξ (t) and η (t) be small variations around any point (x, y). The variation
equation, which we call “tangent-system”, is the linearized equation:

[
dξ(t)

dt
dη(t)

dt

]
=

[
∂f(x,y)

∂x
∂f(x,y)

∂y
∂g(x,y)

∂x
∂g(x,y)

∂y

] [
ξ(t)
η(t)

]
=

[
1
ε

(−x2 + 1
) 1

ε
−1 0

] [
ξ(t)
η(t)

]
(3)

If λk, k = 1, 2, are the eigenvalues, the eigenvectors are given by :

yk =
[−λk

1

]
, k = 1, 2

Each eigenvalues determine a mode. In the regions of the phase plane
where the eigenvalues are real, one of them, say λ2, is proportional to ε−1 and
its absolute value much larger. When it is negative, the associated mode is
evanescent. Let λ1 be the other eigenvalue. We also established that the exact
equation of the invariant slow manifold, on which the slow trajectories of the
dynamical system (1) lean, is obtained by writing that the velocity is parallel
to the eigendirection y1 associated to the non evanescent mode. So, we obtain
another expression of the exact equation of the slow part of the Van der Pol
equation limit cycle:

y = −x3

3
− x + ε x λ1 =

x3

3
− x +

1
2
x

(
1− x2 +

√
(1− x)2 − 2ε

)
(4)

3 Autonomous dynamical systems with periodic
coefficients

Now, consider the parametric Van de Pol equation

{
dx(t)

dt = 1
ε

(
−x3

3 + x + θ(t)y
)

dy(t)
dt = −x

=




f(x, y, t)

g(x, y, t)


 (5)

where θ (t) is a T-periodic mapping from R to R, t 7→ θ (t), supposed to
have a Fourier development limited to pM terms :

θ (t) =
pM∑

p=−pM

θP eipωt, with ω =
2π

T
and θ−k = θ∗k (6)



Autonomous Dynamical Systems with Periodic Coefficients 3

Let θ0 = 1. Now, the variation equation is a homogeneous linear equation
with periodic coefficients, a Hill equation:

[
dξ(t)

dt
dη(t)

dt

]
=

[
1
ε

(−x2 + 1
) θ(t)

ε
−1 0

] [
ξ(t)
η(t)

]
(7)

According the Floquet theory, each of the two solutions of this equation
can be written as:

η (t) = eµtψ (t) , (8)

where the complex number µ is the Floquet exponent and ψ (t) the T-
periodic part of the solution

ψ (t) =
∞∑

m=−∞
ψmeimωt, with ψ−m = ψ∗m. (9)

There are two modes corresponding to the two Floquet exponents. We
use the same argument as previously: if the fast Floquet exponent has a real
negative part, the associated mode is evanescent and the other mode, a slow
solution, remains.

4 Floquet’s exponents computing

A generalization of the G. W. Hill method [4] allows us to deduce a very fast
algorithm that exponentially converges to the exact numerical value [5].

5 Behaviour of the temporal mean of the solutions

Proposition 5.1 Let µ1 the slow Floquet’s exponent. We introduce the as-
sociated dynamical system as the dynamical system with constant coefficients
having µ1 as slow eigenvalue. The temporal means of the slow solutions of a
parametric dynamical system are located on the slow curve of this associated
system. In our example, the equation of this curve is given by:

y = −x3

3
− x + εxµ1 (10)

Proof. According to the Floquet’s theorem, let η (t) = eµ1tψ (t)be the par-
ticular solution of (6) associated to µ1, the slow value of µ, where ψ (t) is a
T-periodic mapping. Since ψ (nT ) = ψ (0), ∀n we have η (nT ) = η (0) eµ1nT .
The temporal means are located on the eigendirection related to the slow solu-
tions of a dynamical system having µ1as slow eigenvalue. Then the trajectories
are given by (4), in which λ1 is replaced by µ1.
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6 Some considerations on stability

Proposition 6.1 Let φ (x, y) = y − x3

3 + x − ε x µ1 = 0 the equation of the
curve where the means are located. This curve is attractive with respect to the
trajectories of the system if the scalar product V.∇φ is positive, where v is the
velocity. The values where the stability changes, corresponding to V.∇φ > 0,
are

V.∇φ (x, y) =
(
−x3

3
+ x + θ(t)y

) (−x2 + 1− εµ1

)− εx = 0 (11)

where θ (t) y =
x3

3
− x +

εx

−x2 + 1− εµ1
(12)

7 Funnelling

Proposition 7.1 The amplitude of the oscillations of the slow mode decreases
in the regions where the Floquet exponent µ1 is negative. It is sensitive to
initial conditions in the regions where µ1 is positive.

Proof. The amplitude of the oscillations of the slow mode being modu-
lated by eµ1t, their amplitude decreases all along the mean curve where µ1

is negative and exponentially increases all along the mean curve where µ1 is
positive. We have drawn the phase plane for several values of the amplitude
and of the frequency for a sinusoidal parameter θ (t). In every picture, this
funnelling phenomenon appears along the slow trajectories.

8 Parametric resonance, period doubling

The imaginary part of the Floquets exponent is related to the frequency of
oscillations: some important features of the solution, such as parametric res-
onances and bifurcations by period doubling can be brought to light.

9 Discussion

Several features, like the mean location, the amplitude, the stability of solu-
tions of parametric dynamical systems depend on the real part of the Floquet
coefficients. The imaginary part is related to parametric resonances and bi-
furcations by period doubling. The same algorithm can be used to compute
the Liapunov exponents of nth- order Hill’s equations associated to higher
order parametric dynamical systems, for example predator-prey models that
take in account the daily or the annual variations of parameters, or dynamical
systems related to periodic biologic rythms.
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10 Figures

In this section are presented some solutions of the Van der Pol parametric
equation

{
dx(t)

dt = 1
ε

(
−x3

3 + x + θ(t)y
)

dy(t)
dt = −x

With θ (t) = θ0 + θ1Cos (ωt). For all pictures, ε = 0.05 and θ0 = 1.
The period T and the amplitude θ1 of the only harmonic are specified. The red
line is the mean trajectory of the parametric dynamical system, say the invari-
ant manifold of the associate dynamical system having the Floquet’s exponent
as eigenvalue. The green line is the nullcline, corresponding to dx(t)

dt = 0 and
θ (t) = θ0 = 1. The blue line is the invariant manifold of the dynamical system
with the constant coefficient θ0 = 1, the mean of the periodic coefficient.
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Fig. 1. Amplitudes 1, 1.5 - Period 5
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Fig. 2. Amplitudes 4, 30 - Periods 0.1, 0.089493
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Table 1. The Floquet - Liapunov exponents role

Tangent Linear System Hill System

Characteristic Eigenvalue Floquet exponent
exponent

Symbol λ µ

Fast evanescent Large and negative Large and negative
modes values of Re (λ) values of Re (µ)

Slow remaining Smaller values of Re (λ) Smaller values of Re (µ)
modes

The location of the points To define the trajectory
Manifold φ = 0 in where trajectories are parallel replace λ by µ in φ (λ).
the phase plane to a slow eigendirection defines So we obtain φ (µ) = 0

the slow manifold φ (λ) = 0

Attractive part Domain of the phase plane
of the manifold: Invariant manifold where the amplitude of the

φ = 0 and oscillation decreases
V.∇φ < 0 (funnelling)

Repulsive part If there is a fast positive eigenvalue: Domain of the phase plane
of the manifold: unreachable part of the manifold where the amplitude of the

φ = 0 and If they are all negative: oscillation increases
V.∇φ > 0 weakly repulsive part of the manifold

Frequency of Frequency of oscillation:
Imaginary part oscillation, period doubling (bifurcations)

period doubling and parametric resonance
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